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The concavity of atomic splittable congestion games with non-linear
utility functions

DARRELL HOY, Northwestern University

Classical work in network congestion games assumes networks are deterministic and agents are risk-neutral.
In many settings, this is unrealistic and players have more complicated preferences. When driving to work

in the morning, a commuter may prefer a safer route, rather than the faster but riskier route. A website

sending out streaming video packets may not care about packets once they are late or derive much benefit
from packets arriving much earlier, but would rather prefer a more consistent delivery model.

We consider the atomic-splittable setting and model these preferences in two ways: when players have
non-linear preferences over (i) the delay on every path, and (ii) on the total delay they experience over all

paths. We ask - when are these games concave?

In the risk-neutral setting, the concavity of the setting underlies many results, including the existence
of pure Nash equilibria. In setting (ii), when players have preferences over the total cost seen, the game

is concave and pure Nash equilibria will always exist. In setting (i) however, we show that the game is no

longer concave, and as a result we no longer know if pure Nash equilibria always exist. In both of these
settings, we show that we can reduce questions about them in the stochastic setting to questions about

them in the deterministic setting.

1. INTRODUCTION
Congestion games come up often in practice - they represent our drives to work in the
morning, the performance of factories under load, and the routing of packets through
computer networks.

In addition, all of these instances involve uncertainty. In the automobile traffic
model, this uncertainty can come from the random assortment of drivers on the road
at one time, but also the random interactions of wildlife on the road; the chances of
accidents; the weather. In computer networks, links can become overloaded and see
quality of service degrade, both wired and wireless.

Agents can respond to this uncertainty in different ways. When trying to get to work
in time for an important meeting, a commuter might adjust her route to take a per-
haps slower, but safer route. If a company is relying on having components in their
supply chain ready for a product launch, they may well try and split the load across
multiple factories on the hope that at least one will be able to get things done in time
(a diversification effect).

We consider the atomic-splittable setting, where each player can divide up their flow
among all possible paths. These models are useful for modeling computer networks,
among others, where the individual units of flow are nearly infinitesimal, but players
can control perhaps large chunks of the flow.

Our players then can either be risk-averse in their total cost, across all flow, or risk
averse in the cost that any particular unit or piece of flow experiences. A coalition
of commuters (as considered in [Cominetti et al. 2009]) may be more concerned with
their individual risk aversion. Packets from a streaming video may be useless after
a certain time, while a site may be less concerned with the exact arrival of bits for a
large file download. A baker delivering loaves of fresh bread might be concerned with
the time that each loaf takes to get to market. On the other hand, a supply chain with
non-biodegradable parts may be more concerned with the total cost across all goods
produced (or, equally, the average cost).

We model the non-linear utility over arrival times with increasing cost functions. We
do this in two ways: with per-path cost functions, and with total delay cost functions. In
the former, a player defines the cost of receiving flow at a time in the future and then
tries to minimize that total cost. A loaf of fresh bread may be worth $4, while a loaf of
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Table I: Differences between linear and non-linear cost function models.
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day-old bread may only be worth $1. Per-path costs can represent this drop in value.
Total delay cost functions on the other hand better represent the total cost across all
goods if there is no decrease in value of a certain good if it takes a little longer to arrive.
In addition, we assume that each player has the same cost function for all of their flow.

We model a stochastic congestion game as a distribution over deterministic games.
This gives us the flexibility to draw direct links between the deterministic setting and
stochastic setting. In particular, when the deterministic version of a game is concave,
the overall game is concave, and results relying on that will carry over.

1.1. Our Contributions
We present two models of per-user aggregate cost in network congestion games: (i)
when players have per-path cost functions, and (ii) when the agents have cost functions
over their total delay.

We characterize when games in both of these settings will be concave and thus have
guaranteed existence of pure Nash equilibria. In particular, in setting (i), we show that
when agents have per-path cost functions these games are not always concave, even
when the cost function is convex (or the utility function is concave).

1.2. Prior Work
Rosenthal [1973] introduced the notion of a congestion game, a generalization of net-
work flow games which abstracts the graph. He showed directly that these games were
concave, and thus always featured pure Nash equilibria.

Nikolova & Stier-Moses [2011] look at nonatomic and atomic unsplittable games
with added-delay independent stochasticity over the edges. In their setting, the agents
have preferences over combinations of the mean and variance of their expected transit
time, rather than the expected utility of our setting. They show that pure equilibria
exists in the nonatomic setting, and in the atomic unsplittable setting only if the delay
is exogenous, and the distribution is just shifted with the amount of flow on the link.

Ordonez and Stier-Moses [2010] consider the nonatomic setting, with added, random
noise on edges, with players seeking to either a) minimize the ith percentile of expected
traffic time, b) pad their transit time with a multiplicative factor of expected travel
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time or c) try to limit the number of edges which will be far away from their average.
They show that pure equilibria exist in each of these instances. Nie [2011] explores
ways of finding the equilibrium in the nonatomic setting, with heterogeneous users
trying to minimize the ith percentile of expected travel time.

A number of papers have looked at atomic splittable routing games in the deter-
ministic setting. The question of the welfare loss due to selfish behavior (Price of An-
archy) has been explored in [Cominetti et al. 2009; Roughgarden 2009; Roughgarden
and Schoppmann 2011]. Bhaskar et al. [2009] addressed the question of uniqueness of
equilibria in such settings, showing the multiple equilibria can exist in games with 3 or
more players, or in graphs with two types of players that do not fall in type topological
classes.

A number of papers have looked at weighted congestion games [Milchtaich 1996,
2009; Harks and Klimm 2010], in which players affect the total delay in different ways,
and often have their own per-resource, separable cost functions. This differs principally
from what we consider in that the cost in such games is still per-resource, as opposed
to aggregate costs across congestion.

1.3. Structure of this Paper
In Section 2, we introduce our models of per-path and total-cost function games. In
Section 3, we consider exactly when these games will be concave. In Section 4, we
consider when these games will have pure equilibria. In Section 5, we conclude.

2. MODELS
2.1. Atomic-splittable preliminaries
An atomic-splittable network congestion game is a k-player game defined over a graph
G = (V,E), where each player controls flow of vi and is routing between nodes si and
ti in the graph. Each player can then split their flow across all valid si − ti paths.
Associated with every edge is a latency function le(x), denoting the delay of the edge
at any level of congestion. We’ll use L to denote the set of allowable such latency
functions. Usually, these will be increasing and semi-convex, where semi-convex means
xl(x) is convex.

In a flow f , we’ll let f ip denote the flow that player i sends along path p. Let f ie =∑
p3e f

i
p, the total flow from player i that travels through edge e. Let fp, fe and f

respectively represent the sum across all players of flow on a path, edge and the total
graph. Let f−ip , f−ie and f−i likewise represent the flow from all players except i on
the respective resource. We’ll allow players to have potentially two other types of cost
functions - either a per-path or a total cost function Ci(). This denotes the actual cost
to the player of experiencing the given delay through a path or the entire graph. In
this paper, we’ll only refer to having one or the other, hence we’ll overload C to denote
the set of allowable cost functions in whichever setting we are discussing.

2.2. Deterministic Models
Definition 2.1. An atomic-splittable, per-path cost functions network congestion

game is an atomic-splittable network congestion game in which players have indi-
vidual cost functions Ci() ∈ C over the cost of paths. Each player’s total cost is given
by
∑

p∈P f
i
p ·Ci

(∑
e∈p le(f

i
e + f−ie )

)
, thus giving each player the following optimization

problem:
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min
fi

∑
p∈P

f ip · Ci

(∑
e∈p

le(f
i
e + f−ie )

)
s.t.

∑
p3e

f ip = f ie ∀i

∑
p∈P

f ip = vi, f ip ≥ 0

le ∈ L ∀e, Ci ∈ C ∀i

Definition 2.2. An atomic-splittable, total cost functions network congestion game
is an atomic-splittable network congestion game in which players have cost func-
tions Ci() ∈ C over the total flow they experience. Each player’s total cost is given
by Ci

(∑
p∈P f

i
p ·
∑

e∈p le(f
i
e + f−ie )

)
, thus giving each player the following optimization

problem:

min
fi

Ci

∑
p∈P

f ip
∑
e∈p

le(f
i
e + f−ie )


s.t.

∑
p3e

f ip = f ie ∀i

∑
p∈P

f ip = vi, f ip ≥ 0

le ∈ L ∀e, Ci ∈ C ∀i

2.3. Stochastic, Atomic-splittable Models
When we move to the stochastic setting, we’ll be thinking of this as drawing a deter-
ministic setting from some distribution. We’ll specifically implement this by drawing a
shared, arbitrary-dimensional random variable from some distribution that all delay
functions see. If the edges all see their randomness drawn independently, this would
be the |E|-dimensional product distribution across all of the individual distributions.
Then, we enforce for any fixed draw that the game falls into whichever groups we are
concerned with.

Definition 2.3. A stochastic atomic-splittable, per-path cost functions congestion
game is a k-player game defined over a ground set of resources E, a set of accept-
able sets of resources, P, volumes of flow vi controlled by each player, delay func-
tions le(x, r) ∈ L on each resource, player specific cost functions Ci() ∈ C over
the cost of paths, and an uncertainty distribution R. Each players action space con-
sists of all possible splits of vi across paths in P . Each players total cost is given by∑

p∈P f
i
p · Ci

(∑
e∈p le(f

i
e + f−ie , r)

)
, thus giving each player the following optimization

problem:
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min
fi

Er∼R

∑
p∈P

f ip · Ci

(∑
e∈p

le(f
i
e + f−ie , r)

)
s.t.

∑
p3e

f ip = f ie ∀i

∑
p∈P

f ip = vi, f ip ≥ 0

le(x, r) ∈ L ∀e, r, Ci ∈ C ∀i

Definition 2.4. A stochastic atomic-splittable, total cost functions game is similar to
above, except each player has a cost function over the total delay that they experience
in the graph.

min
fi

Er∼R

Ci

∑
p∈P

f ip
∑
e∈p

le(f
i
e + f−ie , r)


s.t.

∑
p3e

f ip = f ie ∀i

∑
p∈P

f ip = vi, f ip ≥ 0

le(x, r) ∈ L ∀e, r, Ci ∈ C ∀i

See Section A.2 for an illustration of diversification effects and edge-flow decomposi-
tion in these models.

3. CONCAVITY OF THE GAMES
In this section, we’ll discuss exactly when atomic-splittable network congestion games
with user specific aggregate cost functions are concave. By concave, we mean the fol-
lowing:

Definition 3.1. An n-person game is called a concave game if each person has utility
ψi(xi, x−i), where xi ∈ Si, Si is a convex, closed, bounded set, and ψi(xi, x−i) is concave
in xi for fixed x−i.

In a concave game, each player is effectively solving a convex optimization problem.
Moreover, we know from Rosen [1965] that this is sufficient to prove existence of a
pure equilibria.

The primary result of this section is that even in the deterministic setting, with
convex cost functions, the per-path cost function model will not guarantee a concave
game, while the total-cost function model is always a concave game with convex cost
functions. These results are summarized in Table II.

In the traditional model, atomic-splittable flow games are concave so long as the de-
lay functions are semi-convex. We have a concave game so long as the delay functions
are semi-convex. This comes as a result of the fact that the total cost a player experi-
ences reduces to minimizing

∑
e∈E f

i
e · le(f ie + f−ie ). So, when le is always semi-convex,

this becomes a sum of convex functions, and thus the total summation is convex, giving
a concave game. We’ll now address each setting individually.
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Table II: Guaranteed concavity of games with per-path vs total cost functions, by set-
ting.
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3.1. Total cost setting
In the total cost setting, the game is almost trivially concave when the total cost func-
tions are convex. When edge latencies are semi-convex, the total delay experienced by
a player is the same as in the standard, linear cost model:

∑
p f

i
p ·
∑

e∈p le(f
i
e + f−ie ) =∑

e f
i
ele(f

i
e + f−ie ). This we know is convex in f i. Since the composition of two convex

functions is convex, the total cost experienced by the player, Ci(
∑

p f
i
p ·
∑

e∈p le(f
i
e+f

−i
e ))

is also convex, and hence it is a concave game for any graph. When C is not convex,
then using linear delay functions results in a concave function, hence the game would
not be concave. Thus we have the following:

LEMMA 3.2. Atomic-splittable flow games with player-specific convex total cost
functions are concave games.

3.2. Per-path costs, parallel-link graphs
We now move to the per-path cost setting, but restrict ourselves to parallel-link graphs.
In a parallel-link graph, we have only two vertices and a number of edges between
them. Thus, the problem a player faces can be simplified to:

min
fi

∑
e∈P

f ie · Ci

(
le(f

i
e + f−ie )

)
s.t.

∑
e∈P

f ie = vi, f ie ≥ 0

CLAIM 1. For any convex Ci and semi-convex le, Ci(le(x)) is semi-convex.

We’ll argue directly that the second-derivative is always non-negative:

∂2(xCi(le(x)))/∂x
2 = 2C ′i(le(x))l

′
e(x) + xC ′′i (le(x))l

′
e(x)

2 + xC ′i(le(x))l
′′
e (x)

= xC ′′i (le(x))l
′
e(x)

2 + C ′i(le(x)) (2l
′
e(x) + xl′′e (x))

As l is semi-convex, we have ∂2(xle(x))/∂x2 = 2l′e(x) + xl′′e (x) ≥ 0. The other quantities
are non-negative due to the convexity and monotonicity of Ci hence the above quantity
is positive, and xCi(le) is convex, hence Ci(le) is semi-convex.

LEMMA 3.3. Atomic splittable flow games in parallel-link graphs with player spe-
cific per-path cost functions are concave games.
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v = 10

C(x) =

{
0 if x ≤ 10,

x− 10 if x > 10.

A B C

l1 = 10

l2 = 0

l3 = 10

l4 =

{
0 if x ≤ 1,

x− 1 if x > 1.

Fig. 1: An example of a non-concave game.

PROOF. This now follows directly from our above claim. For each edge, f ie ·Ci(le(f
i
e+

f−ie ) is convex in player i’s complete flow vector f i, hence her total cost is convex in f i.
Thus the total cost is convex, and the game is concave.

3.3. Per-path costs, general graphs
We now move to the general graph setting. We’ll show here that these games need not
be concave, even for a single player. Specifically, this will show up when moving flow
away from a path p, but moving even more flow to a path q, which shares edges with p.
Thus, even though we are removing flow from p, the cost of p increases.

Example 3.4. Consider the setting of one player routing flow of volume 10, from A
to B in the network in Figure 1. Imagine she is indifferent between arrivals until time
10, and sees linear cost thereafter. There are three possible paths for her - call them
H, M , L from top to bottom. If she sends a little flow through A and a lot through C,
all flow will arrive at time 10. If she sends all flow through the middle path, all that
flow will arrive before time 10. Since she is indifferent until time 10, she is fine with
both of these and sees a cost of 0. However, if she splits between those, there will more
than one unit of flow on edge 3, hence the top path will take more than 10 and she
experiences cost.

Consider specifically the two flows f = (1, 0, 9), g = (0, 10, 0). In both, every path
sees delay of 10 or less, since at most one unit of flow is routed over edge 4. Hence
C(f) = C(g) = 0. However, consider the flow f+g

2 = (0.5, 5, 4.5). Now edge 4 sees 5.5
units of flow, hence has a delay of 4.5, giving the flow across the top path a total delay
of 14.5, hence C( f+g

2 ) = 0.5 · C(14.5) = 2.75. Thus, the cost function cannot be convex
and games of this sort are not always concave games.

In a sense though, this example relies on the player deciding not to just take the free
edge, which is strictly better than the edge of cost 10. We now illustrate a slightly more
complicated example in which this is not the case.

Example 3.5. Consider a user of volume 1, routing through the graph shown in
Figure 2. Let her be indifferent between arriving until time 1, at which point her cost
increases linearly. Now, let the delay on edges 1 and 5 be 1; let edge 3 be free and let
both edges 2 and 4 be free up to traffic of 1/2, and x−1/2 thereafter. Now, either flow of
(0.5, 0, 0.5) and (0, 1, 0) both give a total cost of 0, since every path used sees a latency
of 1 and hence a cost of 0. However, moving a little bit of flow from any of those paths
will increase the latency on one of the paths above 1, hence there are no local changes
she can do from either position to improve her situation.

3.4. Stochastic Games
Now, we’ll show that stochastic versions of the concave games already discussed are
also concave. Our first result is a simple one - that if a stochastic game can be inter-
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B

A D

C

l1(x) = 1

l2(x)

l3(x) = 0

l4(x) = l2(x) =

{
0 if x ≤ 1/2,

x− 1/2 if x > 1/2.

l5(x) = 1

v1 = 1

C1(x) =

{
0 if x ≤ 1,

x− 1 if x > 1.

Fig. 2: Player can either put flow through middle path, or split flow along the top and
bottom paths, but any flow in between yields path latencies above 1, hence a non-zero
cost. Thus this is not a concave game.

A B

l1 = x2

l2 = x2

v1 = 1.4

v2 = 0.2

C1(x) = 10− 1

x+ 0.1
C2(x) = x

Fig. 3: Nonexistance of equilibria with non-convex, per-path cost functions

preted as a distribution over concave games with the same strategy space, the stochas-
tic game is also concave.

LEMMA 3.6. Let G be a set of concave, deterministic, n player games, where each
game G shares the same closed, convex and bounded strategy space Si for each player
i, and each game G gives each player i utility ψG(xi, x−i). Let F be a distribution
over games in G . Let Q be a stochastic game with per player utility ψ(xi, x−i) =
EG∼F

[
ψG(xi, x−i)

]
∀xi, x−i. Then Q is a concave game.

This follows because any weighted combination of concave functions will be concave.
So, if every time we fix the coin flips for the randomness in our universe the game
is concave, then the total game is concave. Combining this with the concavity of the
deterministic total-cost function game, shown in Theorem 3.2, we get the following:

LEMMA 3.7. Stochastic atomic splittable games with convex total-cost functions are
concave games.

4. PURE EQUILIBRIA EXISTENCE
We now consider when and where pure equilibria exist. First, all classes of games that
we have just shown to be concave exhibit pure equilibria by [Rosen 1965]. Now, we
argue that this is roughly tight. In the per-path cost function case, we show that even
in parallel-link games, when players exhibit non-convex cost functions, pure equilibria
need not exist.

Example 4.1. Consider the parallel two edge graph shown in Figure 3 with one
large player and lots of small players. Specifically, the large player will control flow of
volume 1, and the non-atomic players will control flow of volume 0.3. The large player
will have a cost function C1(x) = 10− 1

x+0.1 - the non-atomic players will have standard,
linear preferences.
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First, we claim that at equilibrium, either (a) both edges will have the same traffic,
or (b) all the non-atomic users will be on the cheaper edge. Otherwise, some of the
non-atomic users on the pricer path would just move to the cheaper one.

Consider the first setting, where the delay and hence the total flow on each edge
is the same. Thus, each edge has flow of volume 0.8 on it, and player 1 sees cost 1.4 ·
C1(0.8

2) ≈ 12.108. WLOG, let edge 1 be the edge on which player 1 sends at least half
her flow. Now, we’ll show that she always prefers to moving 0.2 units of flow from edge
1 to edge 2. Let g be his flow after the shift, hence g11 = f11−0.2 ≥ 0.5, g12 = f12 +0.2 ≤ 0.9.
Then, with flow g, player 1 sees costs:

g11 · C1(0.6
2) + g12 · C1(1

2) ≤ 0.5 · C1(0.6
2) + 0.9 · C1(1

2)

≤ 12.095

This is less than at the middle, so the larger player will always want to push the flow
away from being evenly balanced. Thus there will be no evenly balance equilibria.

Now, consider the case when the edges are not balanced, and all non-atomic users
are on the same edge - call it edge 1- which thus has less than 0.8 total flow on it. We’ll
now show that the larger player would prefer to push extra flow from edge 2 to edge 1.
Call the large player B, call s the aggregate of the small players. Call the total flow f .
Then by our assumptions, we have:

f1 < 0.8 < f2

fs1 = 0.3

fB1 ≤ 0.5

Now, let’s construct a better flow g. In this, we’ll have player B move enough flow
from 2 to 1 so that the volumes on each edge switch. So, we’ll have g1 = f2 and g2 = f1.
Now, edge 2 becomes the cheaper edge. However, player B has more flow on 2 than he
had on 1 before, hence her cost is lower. Hence, she prefers g to f . Thus, f cannot be an
equilibrium.

Thus, in the game we set up, there can be no pure equilibrium.

5. CONCLUSION
In this paper, we sought to understand when basic results from deterministic, risk-
neutral network flow game carry over to the more general stochastic and potentially
risk averse case. We’ve focused on the concavity of the game because this underlies
many of the known results for graphs in the risk-neutral setting. We think that un-
derstanding this question is fundamental to understanding how robust results about
network routing games are to uncertainty and non-linear preferences in the real world.

To model the more complicated setting, we introduced two logical models of player-
specific utility over path delay and total cost in atomic splittable flow games. When
these games are concave, then we get many results for free, such as pure Nash ex-
istence. However, when players have preferences over delays on a path, the game is
no longer concave, and thus we do not know if pure Nash always exist. With the ad-
vent of larger and larger fractions of internet traffic being used for streaming video
from large websites, it is important to understand how such non-linear preferences
can affect behavior in network flow games.

5.1. Future Work
We’ve hinted throughout at one large open problem - whether or not pure Nash equi-
libria exist when players have per-path cost functions.
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Beyond Nash existence, a natural question arises of the uniqueness of equilibria.
The results from Bhaskar et al.[2009] should carry over in the total-cost setting, but
the per-path model will likely complicate matters.

We’d also like to understand how these preferences affect the social welfare of equi-
libria and the Price of Anarchy. We can use our formulation to show that robust price
of anarchy bounds proven on the deterministic models shown carry over to the stochas-
tic models considered (see this straightforward argument in Section A.1), but we don’t
have any results for these bounds in the deterministic models.

APPENDIX
A.1. Price Of Anarchy
In this section, we consider the effect of per-player cost functions on price of anarchy
results. We consider the framework of (λ, µ)-smoothness, introduced in [Roughgarden
2009]. We show that if the deterministic per-path or total cost flow game is (λ, µ)-
(locally) smooth, then the game remains (λ, µ)-(locally) smooth in the stochastic set-
ting. Note however that this is still one step away from a direct reduction from present
bounds - we say nothing about how smooth the deterministic per-path or total cost
games are.

Recall the definition of (λ, µ)-smoothness:

Definition A.1. [Roughgarden 2009] A cost minimization game is (λ, µ)-smooth if∑n
i ci(y

i, x−i) ≤ λ · SC(y) + µ · SC(x), for any pair of actions x, y, where SC indicates
the social cost function.

Definition A.2. [Roughgarden and Schoppmann 2011] A cost minimization game is
locally (λ, µ)-smooth if for any pair of actions x, y:

n∑
i

[ci(x) +∇ici(x)
T (yi − xi)] ≤ λ · SC(y) + µ · SC(x) (1)

Now, we argue that if you prove that the deterministic setting of any of the earlier
games is (λ, µ)-(locally) smooth, so too will be a distribution over those games.

LEMMA A.3. Let G be a set of (λ, µ)-(locally) smooth, concave, determinis-
tic, n player games, with cost functions cG(xi, x−i) for each player i, in each
game G. Let Q be a stochastic game exhibiting per player costs ci(x

i, x−i) =
EG∼F

[
cG(xi, x−i)

]
∀xi, x−i, G ∈ G . Then Q is (λ, µ)-(locally) smooth.

PROOF. Follows by straightforward linearity of expectations. First, if it holds for
each game in particular for any x and y, then it holds in expectation across all games:

EG∼F

[
n∑
i

cGi (y
i, x−i)

]
≤ EG∼F [(λ · SC(y,G) + µ · SC(x,G))]

n∑
i

ci(y
i, x−i) ≤ EG∼F [(λ · SC(y,G) + µ · SC(x,G))]

n∑
i

ci(y
i, x−i) ≤ λEG∼F [SC(y,G)] + µEG∼F [SC(x,G)]

n∑
i

ci(y
i, x−i) ≤ λ · SC(y, I) + µ · SC(x, I)
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A B C

l1 = 1

l2 = x

l3 = x

l4 = 1

path fp gp
(1, 3) 1/2 0
(1, 4) 0 1/2
(2, 3) 0 1/2
(2, 4) 1/2 0
Cost: 2.25 2.5

Fig. 4: With per-path function of C(x) = x2, not all path flows that induce the same
edge flow are the same - sending half the flow along the top and half along the bottom
is better than top-bottom and bottom-top.

In the locally smooth case, the gradient of a players cost will simply be the expecta-
tion of the gradient, and hence we’ll have exactly the same outcome as above.

A.2. Model Differences
In this section, we discuss a few other differences between our models. In particular,
whether players see diversification benefits (like in the portfolio optimization problem),
and the relationship between optimal edge flows and path flows.

A.2.1. Diversification effects. Our two models have very different behavior when players
are splitting flow across multiple paths. In the total-cost function model, players see
diversification benefits, whereas they do not in the per-path cost function model.

As an example, consider a network of two parallel links, the first with delay drawn
from U [1, 2], the second from U [1, 2.1]. Consider a player that can split her flow across
these edges. In the deterministic setting, she just chooses the faster path and runs
with it. Now, imagine that she controls flow of volume 1, and has a net cost function of
C(x) = x3 over the total delay experienced across his paths. Call f1 the flow he sends
on edge 1. Then, she has the following optimization problem:

min
0≤f1≤1

El1∼U [1,2],l2∼U [1,2.1] [C(f1 · l1 + (1− f1) · l2)]

min
0≤f1≤1

∫ 2

1

∫ 2.1

1

1

1.1
(f1 · l1 + (1− f1) · l2)3 dl2 dl1

Her best action here is to split her flow, 75% on the top edge, 25% on the bottom. So,
even though edge 2 is first-order stochastically dominated by edge 1, it still helps our
user to diversify her exposure to the uncertainty of edge 1.

A.2.2. Edge and Path Decompositions. When players have per-path cost functions, differ-
ent path breakdowns can affect the cost the player sees. This was shown in [Nikolova
and Stier-Moses 2011] for stochastic settings with mean-risk utility functions - we’ll
be able to use a few of their following results directly here.

CLAIM 2. For atomic-splittable, per-path cost function congestion games, not all
path decompositions of a flow given as edge delay give the same utility.

Consider a single player of volume 1 with a per-path cost function C(x) = x2, routing
across the graph in Figure 4. Imagine her sending half of his flow along each edge,
and consider sending half along edges (1, 3) and (2, 4), vs (1, 4) and (2, 3).
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C(f) = 1/2(l1(f1) + l3(f3))
2 + 1/2(l2(f2) + l4(f4))

2

= (1 + 1/2)2

= 2.25

C(g) = 1/2(l1(g1) + l4(g3))
2 + 1/2(l2(g2) + l3(g3))

2

= 1/2(1 + 1)2 + 1/2(1/2 + 1/2)2

= 2.5

Thus, our agent prefers path flow f to path flow g. Now - if we’re given an edge flow for
a given player and their per-path cost function, can we calculate their best path flow
that corresponds to that edge flow? In the nonatomic setting, we have the following
result:

THEOREM A.4. [Nikolova and Stier-Moses 2011] For a nonatomic social optima
given as the edge flows (xe)e∈E , there exists a succinct flow decomposition that uses
at most |E|+ |K| paths.

Note that although they generally consider a different model of uncertainty, because
the path costs are fixed with flows, they only rely on each path having a cost, which
is fixed for the purpose of the linear program used. So, for many players in the atomic
splittable sense, we can solve the linear program once for each of them, fixing the
network flow, giving the following result:

THEOREM A.5. For an equilibrium of the atomic splittable congestion game with
per-path costs, given as the edge flows for each player ((f ie)i)e∈E , there exists a succinct
flow decomposition that uses at most |E|+ |K| paths.
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