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Abstract

In routing games with infinitesimal players, it follows from
well-known convexity arguments that equilibria exist and
are unique (up to induced delays, and under weak assump-
tions on delay functions). In routing games with players that
control large amounts of flow, uniqueness has been demon-
strated only in limited cases: in 2-terminal, nearly-parallel
graphs; when all players control exactly the same amount
of flow; when latency functions are polynomials of degree at
most three.

In this work, we answer an open question posed by
Cominetti, Correa, and Stier-Moses (ICALP 2006) and show
that there may be multiple equilibria in atomic player
routing games. We demonstrate this multiplicity via two
specific examples. In addition, we show our examples are
topologically minimal by giving a complete characterization
of the class of network topologies for which unique equilibria
exist. Our proofs and examples are based on a novel
characterization of these topologies in terms of sets of
circulations.

1 Introduction

In this paper, we study a distributed routing problem
that arises in both electronic communication and trans-
portation: network congestion games. In the problem
we study, there is a network and a set of players; and
each player wants to route flow from a source to a des-
tination along links in the network. The total flow on a
link determines the delay of the link. Each player routes
flow to minimize the average delay of her flow.

In the Internet, we can view a player as a manager
of an overlay network, seeking to route the traffic she
controls. In transportation, we can view a player as a
shipping company, or a bus company, routing multiple
drivers to minimize average delay experienced by her
fleet.

As described in the network congestion game above,
each player controls a discrete, or atomic, amount
of the total flow. These games are called atomic

splittable flow games [2, 13]. A special case of this
setting, described as early as 1952 by Wardrop [18],
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is where each player controls a negligible, infinitesimal,
or nonatomic, amount of flow. In the scenarios above,
these players could correspond to individual messages
or drivers. In the recent literature, games with these
infinitesimal players only are called nonatomic flow

games.
The atomic setting is captured by the nonatomic

setting with the addition of collusion [5]. Collusion

describes the behavior of a subset of players that choose
to cooperate by forming a coalition to reduce the
average delay faced by players in the coalition. If the set
of coalitions is fixed, then a nonatomic flow game with
collusion is an atomic splittable flow game; a coalition
in the nonatomic setting corresponds to a player in the
atomic setting.

We study equilibria of collusive flow games, equiv-
alently, the equilibria of atomic splittable flow games.
An equilibrium in this setting (also called a Nash equi-
librium or an equilibrium flow) is a flow where no player
can unilaterally change her routing strategy and reduce
its total delay.

In the nonatomic game, under weak assumptions
on the delay functions, equilibria exist and if there are
multiple equilibria, the induced delays on each edge are
the same (e.g., [14]). Thus we say that equilibria are
“unique up to induced delays.”

In atomic splittable flow games equilibria also ex-
ist [10], but uniqueness is less well-understood. Previ-
ous work shows that there is a unique Nash equilibrium
(again, under weak assumptions on the delay functions,
and up to induced delays) in a few special cases:

1. if all players are of the same type: they control the
same amount of flow, and have the same source and
destination [10];

2. if the delay functions are all monomials of the same
degree; or they are all polynomials of degree ≤ 3 [1];

3. if the network is a two-terminal nearly-parallel

graph [11].

In contrast to these uniqueness results, it is known
that if different players see different delay functions
on the same edge, multiple equilibrium flows may
exist [10, 11].
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Our Contributions. We settle the question of
uniqueness of equilibria for atomic splittable flow games.
We give the first examples of multiple equilibria in
routing games when all players using an edge experience
the same delay on that edge; and we give a complete
characterization of graph topologies that have a unique
equilibrium (under weak assumptions on the delay
functions, and up to induced delays). To summarize
the results, we use L to denote a natural class of delay
functions (defined in Section 2).

1. For two players, there is a unique equilibrium for
any choice of edge delays in L if and only if the
network is a generalized series-parallel graph. For
multiple players of only two types, there is a unique
equilibrium for any choice of delays in L if and only
if the network is an s-t-series-parallel graph.

2. For more than two types of players, there is a
unique equilibrium for any choice of delays in L
if and only if the network is a generalized nearly-

parallel graph.

The second result generalizes a result of Rich-
man and Shimkin [11] on uniqueness in nearly-parallel
graphs. Our proofs and examples are based on new
characterizations of both generalized series-parallel and
generalized nearly-parallel graphs in terms of sets of cir-
culations.

Related Work. Atomic splittable flow games are
the subject of many recent papers. Harker [4] intro-
duced a model in which both nonatomic and atomic
players are present and investigated the existence and
uniqueness of Nash equilibrium. Catoni and Pallot-
tino [2] first showed that the social cost (total delay) in
atomic splittable flow games may exhibit idiosyncratic
behavior. The social cost in this setting has been fur-
ther studied in [3, 5, 13, 15]. Swamy [16] investigated
how to toll the players to achieve optimal flows.

Stackelberg routing games [17] are related to atomic
splittable flow games in that there is at least one player
that controls a significant amount of flow. In this
setting, there is a player whose objective is not to
minimize the delay of her own traffic but some other
objective, for example, to minimize the total delay of
all traffic [12, 16].

2 Model & Definitions

Let G = (V, E) be a directed graph. For ease of notation
only, we assume without loss of generality that for each
pair of nodes {u, w}, there is at most one arc in E. That
is, there are neither parallel or anti-parallel multi-arcs.∗

∗For each multi-arc, we can introduce a new node z, and
replace one arc (u, w) with arcs (u, z) and (z, w); the first with

The vector f , indexed by edges e ∈ E, is defined
as a flow of volume v if the following conditions are
satisfied. Here fu,w represents the flow on arc (u, w).

∑

w

fu,w −
∑

w

fw,u = 0, ∀u ∈ V − {s, t}.

∑

w

fs,w −
∑

w

fw,s = v.

fe ≥ 0, ∀e ∈ E.

If there are several flows {f1, f2, · · · , fk}, the total

flow f is defined as f :=
∑k

b=1 f b. We define f−b :=
∑

j 6=b f j = f − f b.
A circulation is typically defined as a flow of volume

0. However, we are interested in circulations that arise
as the difference of two flows f and g of the same value,
and thus they may take positive and negative values.
To distinguish these circulations from flows, we denote
a circulation vector as ~f , and define it as satisfying the
following constraint

∑

w

~fu,w −
∑

w

~fw,u = 0, ∀u ∈ V.

If ge − fe ≥ 0, the circulation g − f is in the same
direction as the original directed graph G on edge e; on
the other hand, if ge − fe < 0, the circulation g− f is in
the opposite direction on edge e. For two circulations ~f

and ~g, if ~fe ·~ge ≥ 0, the two circulations are in the same
direction; on the other hand, if ~fe · ~ge < 0, they are in
the opposite direction.

An atomic splittable flow game is a tuple (G =
(V, E), K, l) where K = {(v1, s1, t1), (v2, s2, t2), . . . ,
(vk, sk, tk)} is a set of triples indicating the flow volume,
the source, and the destination for each of the k players,
and l is a vector of delay functions for edges in G. We
denote by le : R

+ → R
+ the delay function for edge e.

For a flow f player b incurs a delay Ce(f
b, f−b) :=

f b
e le(fe) on edge e. His total delay is C(f b, f−b) :=

∑

e∈E Ce(f
b, f−b). Rational players want to minimize

their delays. A flow is at equilibrium if no player can
unilaterally alter his flow and reduce his total delay.
Formally,

Definition 2.1. (Nash Equilibrium)
In an atomic splittable game

(G, {(v1, s1, t1), (v2, s2, t2), · · · , (vk, sk, tk)}, l), flow

f is a Nash equilibrium flow if and only if, for every

player b and every flow g of volume vb,

C(f b, f−b) ≤ C(g, f−b).(2.1)

delay function of the original arc and the second with delay 0.
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In this paper, we use the terms equilibrium, equi-
librium flow, and Nash equilibrium interchangeably.

We consider a natural class of delay functions L.
A delay function le(·) belongs to the class L if it is:
(1) non-negative, (2) non-decreasing, and (3) strictly
semi-convex. A function le(·) is (strictly) semi-convex
if xle(x) is (strictly) convex. For convenience, we re-
strict to strict semi-convexity to eliminate multiplicities
in equilibrium flows caused by the existence of constant
functions. For example, on a 2-vertex graph with 2 par-
allel links and delay functions on both links constant
and equal to 1, there are an infinite number of equi-
librium flows, since each player can split his flow ar-
bitrarily in any equilibrium. Our results handle semi-
convex functions by relaxing uniqueness of equilibria to
“uniqueness up to induced latencies.”

The marginal delay for player b of adding flow to
path p is given by

Lb
p(f) =

∑

e∈p

le(fe) + f b
e l′e(fe)(2.2)

The following lemma follows easily from Karush-
Kuhn-Tucker conditions (see [9], for example) applied
to a player b’s minimization problem.

Lemma 2.2. Flow f is a Nash equilibrium flow if and

only if for any player b and any two directed paths p and

q between the same pair of vertices such that f b
p > 0,

Lb
p(f) ≤ Lb

q(f).(2.3)

This lemma implies that in an equilibrium flow, a
player never sends flow along a directed cycle. It also
implies that for any player b and Nash equilibrium flow
f , the marginal delay Lb

p(f) on all paths p with f b
e > 0

∀e ∈ p will be identical. Thus for a player b and
equilibrium flow f we can simply write Lb(f) for this
value.

3 Agreeing Cycles and Uniqueness of

Equilibria

In this section, we introduce the notion of agreeing

cycles and connect them to the uniqueness of equilibria.

Definition 3.1. Let G = (V, E) be an undirected graph

and ~f1, ~f2, · · · , ~fk be k circulations on G. A cycle C in

G is a j-agreeing cycle if it is a directed cycle in ~f j and

∀e ∈ C, ~fe · ~f j
e ≥ 0.

Figure 1 shows an example of agreeing cycles for players
a and c. Definition 3.1 is based on undirected graphs.
When we discuss directed graphs and consider the
circulation g − f derived from the two flows f and g

(i) Circulations for 3 play-
ers

(ii) Total circulation

Figure 1: Agreeing cycles

of the same volume, if we have a cycle C agreeing with
the circulation g− f , this means that g− f has directed
cycle flow along C, but this does not imply that C is
also a directed cycle in the original directed graph.

Lemma 3.2. Let (G, {(v1, s1, t1), (v2, s2, t2), · · ·,
(vk, sk, tk)}, l) be an atomic splittable flow game, where

G is a directed multi-graph and le ∈ L for any edge e.

If there are two equilibrium flows f and g, then none of

the k circulations gj − f j , 1 ≤ j ≤ k, on graph G, has

an agreeing cycle with g − f .

Proof. Suppose that C is an r-agreeing cycle. We will
show that this leads to a contradiction. See Figure 2
for an illustration of the paths used in the proof. We
first consider how edges along cycle C are oriented in
the original directed graph. By Lemma 2.2, no player
sends flow along a directed cycle. Therefore, there are
some vertices on cycle C for which both incident edges
in C are outgoing edges; similarly, an equal number of
vertices on C must have two incoming edges on cycle C.
We designate the former set as vO

0 , vO
1 , · · · , vO

k−1 and the

latter set as vI
0 , vI

1 , · · · , vI
k−1. Without loss of generality,

assume that the agreeing cycle C runs in the direction
of vO

0 , vI
0 , vO

1 , vI
1 , · · · in the undirected graph. By this

assumption, the player r sends more flow on the path
starting from vO

j to vI
j−1, modulo k, in flow f than in

flow g; similarly, he sends more flow on the path from
vO

j to vI
j , modulo k, in g than in f . In the following,

for ease of exposition, the indices will always be taken
modulo k.

We now define the path on C from vO
j to vI

j−1 as

p
f
j and the path from vO

j to vI
j as p

g
j . Furthermore,

there must exist directed simple paths starting from sr

and ending at vO
j , 0 ≤ j ≤ k − 1; let these paths be

pO
j . Similarly, there must exist directed simple paths

starting from vI
j , 0 ≤ j ≤ k − 1 and ending at tr; let
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these paths be pI
j .
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1
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2
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1
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Iv2v I

2

0
O
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Figure 2: An illustration of all paths along, coming to, and
leaving cycle C.

Consider equilibrium flow f . Since the path com-
posed of pO

j and p
f
j and the path composed of pO

j−1 and
p

g
j−1 both start with source sr and end in the vertex

vI
j−1, Lemma 2.2 implies that

Lr
pO

j
(f) + Lr

p
f
j

(f) ≤ Lr
pO

j−1

(f) + Lr
p

g
j−1

(f),(3.4)

for 0 ≤ j ≤ k − 1. If we sum up inequality (3.4)
over all j, all Lr

pO
j

terms will cancel, and we have

k−1
∑

j=0

Lr

p
f
j

(f) ≤
k−1
∑

j=0

Lr
p

g
j
(f).(3.5)

A symmetric argument yields the following relation
for g.

k−1
∑

j=0

Lr
p

g
j
(g) ≤

k−1
∑

j=0

Lr

p
f
j

(g).(3.6)

Player r sends more flow on p
f
j in flow f than in flow

g, so f r

p
f
j

> gr

p
f
j

. Since the r-agreeing cycle C runs in

the direction of vO
0 , vI

o , vO
1 , vI

1 , · · ·, so by Definition 3.1,
we have that g

p
f
j

≤ f
p

f
j

. These two facts imply

Lr

p
f
j

(f) =
∑

e∈p
f
j

Lr
e(f)

=
∑

e∈p
f
j

le(f) + f r
e le(f)

>
∑

e∈p
f
j

le(g) + gr
e le(g)

=
∑

e∈p
f

j

Lr
e(g) = Lr

p
f
j

(g)

(3.7)

In a similar manner, for path p
g
j , we can show that

Lr
p

g
j
(f) < Lr

p
g
j
(g).(3.8)

Combining inequality (3.5), (3.7), and (3.8), we
derive

k−1
∑

j=0

Lr

p
f
j

(g) <

k−1
∑

j=0

Lr

p
f
j

(f) ≤
k−1
∑

j=0

Lr
p

g
j
(f) <

k−1
∑

j=0

Lr
p

g
j
(g),

contradicting inequality (3.6). This gives the required
proof.

The lemma has two implications. The first is
that if we can identify a class of graphs in which
any set of circulations always has an agreeing cycle,
then we can prove that this class of graphs has a
unique equilibrium for any atomic splittable flow game.
We use this below to demonstrate the uniqueness of
equilibria in generalized nearly-parallel graphs with
an arbitrary number of players, in generalized series-
parallel graphs with 2 players, and in series-parallel
graphs with multiple players where each player is one
of two types.

The second implication is that in order to find
an example with multiple equilibria, it is necessary to
construct a set of circulations that do not have an
agreeing cycle. In Section 4 we use this as a basis to
construct examples showing that our characterizations
of uniqueness are complete.

3.1 Two-Player Games and Series-Parallel

Graphs We start by defining s-t-series-parallel and
generalized series-parallel graphs. Their definitions use
the following operations: (i) Copy: for any edge e =
(u, v), add a parallel edge e′ = (u, v); (ii) Split : for
any edge e = (u, v), replace it by a new vertex w and
edges (u, w) and (w, v), and (iii) Add : for any vertex u,
add a new vertex w and a new edge (u, w). A graph
is s-t-series-parallel if it is a single edge e = (s, t), or
is constructed by any sequence of copy and split oper-
ations from (s, t). A graph is generalized series-parallel

if it is a single edge, or if it is created by any sequence
of copy, split and add operations from a generalized
series-parallel graph. Equivalently, a graph is gener-

alized series-parallel if and only if it does not contain
a K4 minor. (K4 is a clique on four vertices. A graph
H is a minor of graph G if H is isomorphic to a graph
that can be obtained by zero or more edge contractions
on a subgraph of G.) The equivalence of these two defi-
nitions for generalized series-parallel graphs was shown
in [6, 8].

Lemma 3.3 gives a novel characterization for gen-
eralized series-parallel graphs, based on sets of circula-
tions. For the rest of this section, for two-player games
we use r(ed) and b(lue) to denote the two players, so
that f r is the red flow and f b is the blue flow.

Lemma 3.3. An undirected graph G is a generalized

series-parallel graph if and only if, given any two cir-
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culations ~f b and ~f r on G, there is either a red or a blue

agreeing cycle.

Proof. (⇒) We prove by induction on the number of
copy / split / add operations performed to generate G.
The base case is a single edge connecting two vertices,
where the theorem is vacuously true.

For the induction step, suppose that the last oper-
ation is a split operation, breaking the edge e′′ = (u, v)
into two edges e = (u, w) and e′ = (w, v). Remove w

and replace the two edges e and e′ with e′′ = (u, v) and

update the circulations as follows: ~f b
e′′ = ~f b

e , ~f r
e′′ = ~f r

e .
Applying the induction hypothesis, we have an agree-
ing cycle C. If C does not involve edge e′′, we are
done. If e′′ ∈ C, we have another agreeing cycle
C′ = (C − {e′′}) ∪ {e, e′} in the original graph, by ex-
panding flow f on e′′ to e and e′ in the obvious way.

Suppose that the last operation is an add operation
(adding a dangling vertex), then the circulations will
not go to the newly-added vertex, so the induction step
is trivial.

Now we consider the final case that the last opera-
tion is a copy operation, adding e′ = (u, v) to the graph
as a parallel link of e = (u, v). To avoid trivialities, we
assume that the cycle composed of e and e′ is not an
agreeing cycle. Now we merge e and e′ into a new link
e′′ and update the circulations accordingly as follows:
~f b
e′′ = ~f b

e + ~f b
e′ , ~f r

e′′ = ~f r
e + ~f r

e′ . Induction hypothesis
implies that in the reduced graph, we have an agreeing
cycle C. If C does not involve e′′, we are done trivially.
If not, without loss of generality, we assume that cycle
C is a red agreeing cycle. If ~f r

e′′ · ~f b
e′′ ≥ 0, then at least

one of e or e′ can replace e′′ in the original graph for
the agreeing cycle. On the other hand, if ~f r

e′′ · ~f b
e′′ < 0,

then since C is a red agreeing cycle, |~f r
e′′ | ≥ |~f b

e′′ |, the
red flow either has more flow volume than the blue or is
in the same direction as the blue on either e or e′. In ei-
ther case, this edge e or e′ can replace e′′ in the original
graph for the construction of the agreeing cycle.

(⇐) In Section 4 we give an example pictured in
Figure 5(iii) of two circulations in a K4 graph that do
not have an agreeing cycle. By the second definition for
generalized series-parallel graphs, any graph that is not
generalized series-parallel contains K4 as a minor.

Applying Lemma 3.2 to Lemma 3.3 implies the next
theorem.

Theorem 3.4. There is a unique Nash equilibrium flow

for the two-player game (G, {(vb, sb, tb), (vr, sr, tr)},l),
where G = (V, E) is a directed generalized series-parallel

graph and le ∈ L for each edge e ∈ E.

This holds even when both players have different
sources and destinations.

Our next theorem extends Theorem 3.4 to more
than two players, as long as each player is standard and
is one of two types. For a routing game on an s-t-series-
parallel graph, a player is standard if his source is s and
his sink is t.

Theorem 3.5. There is a unique Nash equilibrium flow

for the game (G, {(v1, s, t),(v2, s, t),· · ·, (vk, s, t)}, l)
where G = (V, E) is a directed s-t-series-parallel graph,

le ∈ L ∀e ∈ E and vi ∈ {vb, vr} ∀i.

This theorem is tight in the following sense: in
Section 4.3 we give an example with three types of
standard players in an s-t-series-parallel graph that has
multiple equilibria. The proof of this theorem makes
use of the following lemma about standard players in
series-parallel graphs. The lemma provides bounds on
the amount of flow a player can put on an edge in an
equilibrium flow, relative to other players. It extends a
result of [10] restricted to parallel link graphs.

Lemma 3.6. Let f be an equilibrium flow for the

atomic splittable flow game (G, {(v1, s, t), (v2, s, t) ,· · ·,
(vk, s, t)}, l) where G = (V, E) is an s-t-series-parallel

graph, and le ∈ L, ∀e ∈ E. Then for any pair of players

b and r and any edge e, f b
e > f r

e if and only if vb > vr.

Lemma 3.7. Let G be an s-t-series-parallel graph. If f b

and f r are two s− t flows such that v(f b|G) > v(f r|G),
then there exists an s − t path p such that ∀e ∈ p,

f b
e > f r

e .

Proof. In the SP decomposition of G, every time the
graph is split into two parallel graphs G1 and G2,
v(f b|G) = v(f b|G1

) + v(f b|G2
). Thus if v(f b|G) >

v(f r|G), at least one of the parallel graphs must have
more flow on it from b than from r.

Proof of Lemma 3.6. Suppose vb ≤ vr and f b
e > f r

e for
some edge e. We will derive a contradiction. Consider
the decomposition tree of graph G. Edge e is a leaf
node. We climb up the tree until we reach the last
node G1 fulfilling the property v(f b|G1

) > v(f r|G1
).

Furthermore, let G2 be the parent of G1 in the tree,
and by our choice of G1, v(f b|G2

) ≤ v(f r|G2
). Such a

graph G2 must consist of two series-parallel graphs in
parallel, one of which is G1. If G2 consists of two series-
parallel graphs in series, then v(f b|G2

) > v(f r|G2
), a

contradiction. Furthermore, by the volumes of flows on
G1 and G2, we have v(f b |G2\G1

) < v(f r |G2\G1
).

Let the source and sink of G1 and G2 be s′ and
t′. By Lemma 3.7, there is a path p in G1 such that
∀e ∈ p f b

e > f r
e , moreover, since all players share the

same delay function on each edge, we have
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Lb
p(f) =

∑

e∈p Lb
e(f)

=
∑

e∈p le(f) + f b
e l′e(f)

>
∑

e∈p le(f) + f r
e l′e(f) = Lr

p(f).

Similarly, there exists a path p′ starting from s′ and
ending at t′ in G2\G1 such that ∀e ∈ p′, f b

e < f r
e and as

all players share the same delay function on each edge,
we have

Lb
p′(f) =

∑

e∈p′ Lb
e(f)

=
∑

e∈p′ le(f) + f b
e l′e(f)

<
∑

e∈p′ le(f) + f r
e l′e(f)

=
∑

e∈p′ Lr
e(f) = Lr

p′(f)

Moreover, by Lemma 2.2, we have Lb
p(f) ≤ Lb

p′(f)
and Lr

p(f) ≥ Lr
p′(f). Putting all these together, we

derive Lr
p′(f) ≤ Lr

p(f) < Lb
p(f) ≤ Lb

p′(f) < Lr
p′(f), a

contradiction.
Proof of Theorem 3.5. Suppose that there are two Nash
equilibrium flows f and g. We will derive a contradic-
tion. Let the players of the first type be b1, b2, · · · , bk

and those of the second type be r1, r2, · · · , rh. By
Lemma 3.6, on every edge e, f bi

e = f b
e , gbi

e = gb
e,

∀i ∈ {1, 2, · · · , k}; similarly, f ri
e = f r

e , gri
e = gr

e ,

∀i ∈ {1, 2, · · · , h}. As a result, all circulations ~Bi =
gbi − f bi , 1 ≤ i ≤ k, are identical (i.e., on every edge,
their flow values are the same and they are in the same
direction); so are all circulations ~Rj = grj − f rj , 1 ≤
j ≤ h. Now we “bundle” all blue and red circula-
tions into two aggregated circulations ~B =

∑k
i=1

~Bi and
~R =

∑h
j=1

~Rj.
As an s-t-series-parallel graph is a special case of

generalized series-parallel graphs, and as there are only
two aggregated circulations ~B and ~R, we can apply
Lemma 3.3 to graph G and assert that there is an
agreeing cycle C. Without loss of generality, let C be a
r(ed)-agreeing cycle and the sum of the two circulation
~B and ~R be ~D. Given any edge e ∈ C, by Definition 3.1,
we know that ~Re · ~De ≥ 0, furthermore, since ~R = h~Ri,
we have ~Ri

e · ~De ≥ 0. Finally, observe that ~D = ~B+ ~R =
∑k

i=1
~Bi +

∑h
j=1

~Rj . So C is also an agreeing cycle
among the k+h (small) circulations. Lemma 3.2 implies
that f and g cannot be both equilibrium flows. This is
a contradiction.

3.2 Multiplayer Games and Nearly-Parallel

Graphs In this section, we prove that a generalized
nearly-parallel graph has a unique Nash equilibria with
any number of players of any number of types.

We begin with some definitions. A merge operation
takes a graph G = (V, E) and any two vertices v1, v2 ∈
V . It replaces v1 and v2 with a single vertex v and

each edge e = (u, w) ∈ E with u ∈ {v1, v2} by an edge
e′ = (v, w). A two-terminal network is a triple (G, s, t)
where s and t are nodes in the graph G and each vertex
and each edge belong to at least one path from s to t.
Vertices s and t are called the terminals of G.

Definition 3.8. A two-terminal nearly-parallel graph

can be constructed by starting with any of the five two-

terminal networks in Figure 3 and applying the following

operations any number of times in any order.

1. series-join: given (G1, s1, t1), (G2, s2, t2), both

nearly-parallel, merge t1 and s2 into a single node

to produce (G, s1, t2).

2. edge-split: for an edge (u, v) ∈ G, introduce a

vertex w and replace (u, v) with two new edges

(u, w) and (w, v).

T

S

...

T

S

...

T

S

...

T

S

...

T

S

..

.

Figure 3: The five basic units of nearly-parallel graphs. The
vertices labeled as S and T are the terminals.

Milchtaich [7] characterized nearly-parallel net-
works as follows: a two-terminal network G is nearly-
parallel if and only if it does not contain the five-arc
graph shown in Figure 6(i) as a minor.

Equivalently, we define a component to be a graph
consisting of a set of vertex-disjoint paths connecting
two nodes called hubs. The solid circles shown in
Figure 3 are the hubs by this definition. We will call
such a component a hub-component. Any two vertices
in the hub-component may be the terminals. A two-
terminal nearly-parallel graph is any graph composed
of hub-components using series-joins.

For graphs G1 = (V1, E1) and G2 = (V2, E2), the
component-join operation consists of merging any two
vertices v1 ∈ V1 and v2 ∈ V2 into a single vertex v.

Definition 3.9. A generalized nearly-parallel graph is

any graph that can be constructed from hub-components

using component-join operations.

The key difference between two-terminal nearly-
parallel graphs and generalized nearly-parallel graphs is
that the latter allows hub-components to be connected
in a tree structure, while the former only allows them
to be connected in a line as demonstrated in Figure 4.
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Note that the graph in Figure 6(i) does not contain
a cut-node. Since the nodes formed by component-join
operations are all cut-nodes, if the graph in Figure 6(i)
is a minor of G, it must be a minor of a bi-connected
component of G. This, it must be a minor of a nearly-
parallel graph. Using Milchtaich’s characterization of
nearly-parallel two-terminal graphs mentioned above, it
follows that a graph is generalized nearly-parallel if and
only if it does not contain this graph as a minor.

The next theorem characterizes generalized nearly-
parallel graphs in terms of agreeing cycles.

...

.. . ...

(i) Two-terminal nearly-parallel graph.

..

.

...

...

...

(ii) Generalized nearly-parallel graph.

Figure 4: A comparison of two-terminal nearly-parallel
graphs and generalized nearly-parallel graphs.

Theorem 3.10. An undirected graph G is generalized

nearly-parallel if and only if given any set of circulations

{~f1, ~f2, · · · , ~fk}, there exists a j-agreeing cycle, for

some 1 ≤ j ≤ k.

Proof. (⇒) We first consider the case that G is a single

hub-component with hubs v and w. Let ~f be the sum of
all the k circulations. Since every circulation ~f j sends
the same amount of flow on every edge along a given
path p from v to w, we can reduce p to a single edge
ep. If ~fe = 0 ∀e ∈ E , then every ~f j agrees with ~f . So

we can assume there is an edge e with |~fe| > 0. Re-

orient all edges from w to v so that ~fe > 0 means that
~f goes from w to v while ~fe < 0 means ~f is from v

to w on edge e. Choose an edge ê satisfying ~fê < 0
and let Fwv be the set of circulations that agree with
~f on ê: Fwv = {~f j|~f j

ê · ~fê > 0}. A circulation in Fwv

restricted to G\{ê} is a flow from w to v. Moreover,

the total circulation ~f restricted to G\{ê} is also a flow
from w to v. So there exists a non-empty set of edges
E+ = {e|~fe > 0}.

We assume that there is no agreeing cycle and will
show that this assumption leads to a contradiction. Let
F = {~f j|~f j

e · ~fe > 0, for some e ∈ E+.}. If there is a

circulation ~f j ∈ F ∩ Fwv, then there is a j-agreeing
cycle composed of {ê, e} for some e ∈ E+. Thus, we
can assume F ∩ Fwv = ∅. Furthermore, if there is a
circulation ~f j ∈ F and an edge e ∈ E − (E+ ∪{ê}) with

|~f j
e | > 0 and ~f j

e · ~fe ≥ 0, then there is a j-agreeing cycle

composed of {e, e′} for some e′ ∈ E+. Thus, if ~f j ∈ F

and ~f j
e < 0 for some e ∈ G\{ê}, then e ∈ E+. Note that

the total flow on edges in E+ is equal to the sum of the
circulations in F restricted to E+ and the circulations
not in F restricted to E+. Formally:

∣
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∣

∣

∣

∣

∣

∣

The first term must be strictly greater than 0, since
~f restricted to G\{e} is a flow from w to v. The
sum of the two terms inside the brackets is ≤ 0, since
F ∩ Fwv = ∅ and if ~f j ∈ F and ~f j

e < 0, then e ∈ E+.
Combining these two facts, we arrive at a contradiction
when G is a single hub-component.

Now suppose G is composed of a set of hub-
components G1, G2, · · ·. Observe that a circulation
~f j can be decomposed into a set of cycle flows, each
of which must reside entirely within a hub-component
Gi. So ~f j can be decomposed into a set of disjoint
circulations, each of which is entirely contained in a
hub-component Gi. The above argument implies that
any Gi that has non-zero circulation must contain an
agreeing cycle for some circulation ~f j .

(⇐) Figure 6(i) shows an example containing a five-
arc graph with three circulations that do not have an
agreeing cycle. Any graph which is not nearly-parallel
must contain such a five-arc graph as a minor.

It follows from this characterization and from
Lemma 3.2 that for atomic splittable flow games in gen-
eralized nearly-parallel graphs, there is a unique equi-
librium.

Theorem 3.11. Let (G, {(v1, s1, t1), (v2, s2, t2), · · ·,
(vk, sk, tk)}, l) be an atomic splittable flow game, where

le ∈ L ∀e ∈ E. If graph G is a generalized nearly-

parallel graph, then there is a unique equilibrium flow.
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4 Multiple Equilibria

In this section, we exhibit the first examples of Nash
equilibria flows in atomic splittable flow games where
all delay functions are shared.

As mentioned in Section 1, if all delay functions are
polynomials of degree ≤ 3, then there is a unique Nash
equilibrium flow up to induced latencies. Therefore, to
construct an example with multiple equilibria, we need
highly-nonlinear functions. However, such functions can
be hard to reason with.

To help with this, we use “elbow” functions, as
shown in Figure 5(i), to simulate a convex function
with higher second derivatives. Given two Nash equi-
librium flows f and g, suppose le is an unknown func-
tion in L. It is noteworthy that the following six val-
ues fe, ge, le(fe), le(ge), l

′
e(fe), l

′
e(ge) are critical, because

they determine the marginal delays in the two equilib-
rium flows f and g on edge e. How the function le
behaves in other places except fe and ge does not really
matter. As a consequence, we can use two simple linear
functions l̃1e , l̃

2
e to simulate such a function le. The key

is to make sure that the intersection of l̃1e and l̃2e is “in
between” fe and ge.

The second important idea in our construction is
how we design flow differences. If there are really
two Nash equilibrium flows f and g, there cannot be
an agreeing cycle among the set of circulations {gi −
f i}1≤i≤k, as shown in Lemma 3.2.

4.1 Constructing the Examples As stated above,
the first step in constructing the examples is finding a
set of circulations to be the pattern for g−f so that there
is no agreeing cycle. The circulations for the examples
are given in Table 3 and Table 7. The next step is to
choose flows and delay functions so that the marginal
delays across parallel paths satisfy Equation 2.3 for
both f and g. Additionally, the delay functions must
satisfy the properties for elbow functions described
above. Writing down these equalities and including
nonnegativity and flow conservation constraints gives us
a system which, though underconstrained, is quadratic
in the unknowns, and an example is simply a feasible
solution to this system of equalities and inequalities.

To find such a solution, we proceed by picking values
for the unknowns. For each edge, we try to pick flows
and delay functions so that the flows constructed thus
far satisfy equilibrium conditions. In both examples,
the highest indexed edge is what we call the “long edge”.
The values for the unknowns on this long edge are picked
last. Hence, in choosing these values to satisfy the
system of equalities and inequalities we have very little
freedom, and these values are quite unappealing.

For the second example, picking a large number

for the number of players of type a allows us greater
freedom in choosing values for the set of circulations,
which makes it easier to construct the example.

4.2 Multiple Equilibria with Two Players In our
first example, there are only two players. The graph
is shown in Figure 5(ii). Our example is tight in the
following sense: it is K4, the smallest graph that is not
a generalized series-parallel graph. This provides the
counterpoint to Lemma 3.3.

Flow Value

Delay

equilibrium f 

equilibrium g

(i) An elbow function.

t

1 2

3

4 5

s

6

(ii) The counter example,
K4.

t

s

4 4

4 4

8
5

5

5

5

(iii) The two circulations gb −
fb (solid line) and gr − fr

(dotted line).

Figure 5: The delay functions and the graph we use in
constructing the examples.

The flow difference shown in Figure 5(iii) does not
have an agreeing cycle. The blue player b has flow
volume 1425.42125 and the red player r has flow volume
285.42125. The delay functions are the same for edges
e2 and e4, and for edges e1 and e5. The detailed delay
functions are in Table 1, edge flows for equilibrium flow
f are given in Table 2 and the change in flow g − f are
given in Table 3. The marginal delays for each path are
in Table 4.†

†The example can be verified by computing for each path the
marginal delay as in Equation 2.2, and confirming that Lemma 2.2
indeed holds for equilibrium flows f and g. For example, for blue
player b for equilibrium flow f the marginal delay in using the
path formed by edges e4 and e1 is 0.02 × (500 + 500) + 670 +
0.55 × (500 + 600) + 65 = 690 + 670 = 1360, and this is less than
or equal to the marginal delay on any other s − t path.
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Edge Delay function

e1, e5
∗



0.55x + 65 if x ≥ 599.34
0.1694x + 293.1103 otherwise

e2,e4 0.02x + 670
e3 0.06x + 208

e6
∗



x + 323.7362 if x ≥ 609.5
0.569915x + 585.8053 otherwise

Table 1: Delay functions

Edge Player b Player r Total
e1 500 100 600
e2 500 0 500
e3 0 100 100
e4 500 0 500
e5 500 100 600
e6 425.42125 185.42125 610.8425

Table 2: Edge flows for equilibrium flow f

Edge Player b Player r Total
e1 4 -5 -1
e2 4 0 4
e3 0 -5 -5
e4 4 0 4
e5 4 -5 -1
e6 -8 5 -3

Table 3: Change in flow g − f

Path Lb
p(f) Lr

p(f) Lb
p(g) ∗ Lr

p(g) ∗

e4,e1 1360 1130 1170.1185 1090.7539
e5,e3,e1 1554 1120 1191.617 1040.7478

e5,e2 1360 1130 1170.1185 1090.7539
e6 1360 1120 1170.1185 1040.7478

Table 4: Marginal delays for equilibrium flows f and g on all
possible paths

∗Values are accurate to 4 decimal places

4.3 Multiple Equilibria with Three Types of

Players Our next example demonstrates existence of
multiple equilibria on the series-parallel graph in Fig-
ure 6(i). This is the smallest graph on which there
can be two equilibria, since removing an edge creates
a nearly-parallel graph. As with the previous example,
we use piece-wise linear delay functions to represent the
delay functions on the edges.

The example uses 200 players but only 3 types of
players: a, b and c. There are 198 players of type a,
and one each of types b and c. Table 5 gives the delay
functions for each edge. Table 6 gives the flow on each
edge for the first equilibrium flow and Table 7 gives the
difference in equilibrium flows, g−f . Tables 8 and 9 list
the marginal delays on each edge for the players for flows
f and g. Since the graph is series-parallel, by Lemma 3.6
all players of type a have the same flow pattern. Thus
the tables give the flow and marginal delay of a single
type a player.

5 Extensions

In this work, we have made use of the idea of agreeing
cycles to obtain several equilibrium uniqueness results.

(i) The graph (ii) Player type a

(iii) Player type b (iv) Player type c

Figure 6: Graph for the counter example and edges used
by the players

In presenting our results, we made two simplifying
assumptions:

1. All players use shared delay functions on each edge.

2. For a player b, his delay is measured by the product
of his own flow f b

e and the delay le(fe) on the
edge e. Thus his marginal delay is equivalent to
le(fe) + f b

e l′e(fe).

Neither assumption is necessary for the proofs of
Theorem 3.4 and Theorem 3.11. Even if each player
has his own delay function lbe, these results still hold.
The reason is that both these results are proved relying
on the fact that agreeing cycles exist. From the proof
of Lemma 3.2, it is not hard to observe that the delay
functions used throughout the proof need not be shared
delay functions. They can be player-specific functions
lbe.

Moreover, Theorem 3.4 and Theorem 3.11 hold even
if the delay of player b takes a more complicated form
(instead of simply the product f b

e lbe(fe).) In particular,
we can express the delay for player b on edge e as
a function Jb

e (f b
e , fe). His marginal delay on edge

e can be thus expressed as a function Kb
e(f

b
e , fe) =

∂
∂fb

e
Jb

e(f b
e , fe) + ∂

∂fe
Jb

e(f b
e , fe). As long as the function

Kb
e(f

b
e , fe) is strictly increasing in both parameters f b

e

and fe, Lemma 3.2 still holds. This can be inferred
by carefully observing Inequalities 3.7 and 3.8. Both
(strict) inequalities hold because of the monotonicity of
f b

e and fe.

Acknowledgment

We thank Shahar Dobzinski and Zoya Svitkina for
helpful conversations.

756 Copyright © by SIAM. 
Unauthorized reproduction of this article is prohibited.



References

[1] Eitan Altman, Tamer Basar, Tania Jimenez, and
Nahum Shimkin. Competitive routing in networks
with polynomial costs. IEEE Transactions on Auto-
matic Control, 47(1):92–96, January 2002.

[2] Stefano Catoni and Stefano Pallottino. Traffic equi-
librium paradoxes. Transportation Science, 25(3):240–
244, August 1991.

[3] Roberto Cominetti, Jose R. Correa, and N. E. Stier-
Moses. The impact of oligopolistic competition in net-
works. Operation Research, 2008. to appear, extended
abstract entitled “Network games with atomic players”
appeared in ICALP 06.

[4] P. Harker. Multiple equilibrium behaviors on networks.
Transportation Science, 22(1):39–46, 1988.
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Edge Delay function

e1



0.8x + 265.46961725 if x ≤ 760.985
1.14885x otherwise

e2



x + 180.349 if x ≤ 3606.98
1.05x otherwise

e3
∗



3.06725

16.02
× 10

−3
x + 1195.24990651

e4

10.75

15
x + 214.329

e5
∗

8

>

>

>

>

<

>

>

>

>

:

9.14822205205 × 10−7x if x ≤ 413000000

1.23592884775 × 10−3x− 510060.792550
if 413000000 ≤ x ≤ 414410220

1.23799886951 × 10−3x− 510918.630724
otherwise

Table 5: Delay functions

Edge Player a Player b Player c

e1 0.01 354 405
e2 0.01 154 3450
e3

∗ 0 0 7844.06976744
e4

∗ 0 200 4799.06976744
e5

∗ 2055014.64831 2408742.13092 5108573.92631

Edge Total
e1 760.98
e2 3605.98
e3

∗ 7844.06976744
e4

∗ 4999.06976744
e5

∗ 414410216.423

Table 6: Edge flows for equilibrium flow f

Edge Player a Player b Player c Total
e1 1 -75 -122.99 0.01
e2 1 -40 -156 2
e3 0 0 -8.01 -8.01
e4 0 -35 25 -10
e5 -1 75 131 8

Table 7: Change in flow g − f

Edge Player a Player b Player c

e1
∗ 874.26161725 1157.45361725 1198.25361725

e2 3786.339 3940.329 7236.329
e3

∗ 1196.75176188 1196.75176188 1198.25361
e4 3796.995666 3940.329 7236.329
e5

∗ 4660.60061725 5097.78261725 8434.58261725

Table 8: Marginal delays for flow f

Edge Player a Player b Player c

e1
∗ 875.4237 1194.79251151 1198.25055

e2 3789.4395 3908.079 7247.079
e3

∗ 1196.75022826 1196.75022826 1198.25055
e4 3789.829 3908.079 7247.079
e5

∗ 4664.8632 5102.87151151 8445.32955

Table 9: Marginal delays for flow g

∗Values are approximate and are shown correct to 12 significant
digits
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