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ABSTRACT

Strategic Computation via Non-Revelation Mechanism Design

Darrell Hoy

Systems with strategic agents provide a challenge for the techniques of Computer Science:

the behavior and objectives of agents are effectively already incorporated into the system,

and so must be accommodated in analysis or design. This thesis studies how to incorporate

the incentives and objectives of strategic agents into the analysis of non-revelation auctions.

A central theme is understanding when simple auctions, which require little knowledge of

the details of the agents, perform nearly as well as optimal auctions which require much

more knowledge of the agents and the setting.

The center of our analysis is the simplest of auctions: the first-price auction, where the

highest bidder wins and pays her bid. We will show that the first-price auction behaves

well in many settings: for risk-neutral and risk-averse bidders, when the designer wants to

maximize revenue or welfare, and in asymmetric as well as symmetric settings. We will also

show that the first-price auction is an archetypal auction for analysis: we can reduce the

analysis of other auctions, theoretical or empirical, to the analysis of the first-price auction.
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CHAPTER 1

Introduction

With the growth of the Internet, more and more systems are being developed that in-

volve many agents beyond the control of the specific user or designer of the system. The

performance of Yelp’s rating system, Wikipedia’s moderation system or Google’s advertising

auction depend crucially on how users behave within the systems.

Yet systems involving strategic agents provide a challenge for the techniques of Computer

Science: the behavior and objectives of agents are a key component of the system and so

must be accommodated in analysis or design. Incorporating strategic behavior of users is

more challenging than incorporating properties of a circuit or other component we control,

because we rarely have as precise an understanding of the incentives of an agent as we do of

the properties and behavior of a circuit.

A mechanism is a strategic system wherein the real inputs to the algorithm are in the

minds of the strategic agents. Traditional revelation mechanism design focuses on incentiviz-

ing the agents to reveal this information, so that the designer can easily solve her problem

with the actual inputs.

However, revelation mechanisms are rarely found in practice, and so this thesis focuses

on understanding non-revelation mechanisms for resource allocation problems (auctions):

where the agents are incentivized to reveal something about their information, not all of

their information. The private information in this setting is the value the agents place on

the resource the designer controls. Auctions are used for the allocation of many resources:
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advertising space, flowers, licenses to drill for oil or use wireless spectrum to name a few.

They also offer a simple set of incentives from which to explore the nature of strategic

computing: the bidders in the auction want the resource; the designer or auctioneer wants

money (revenue maximizer), or wants to make sure the best person gets the resource (welfare

maximizer).

Much of our focus will center around the simplest of non-revelation auctions: the first-

price auction. In the (sealed-bid) first-price auction, agents submit their bids; the highest

bid wins and pays her bid.

This thesis focuses primarily on auctions in the Bayesian setting, where the private infor-

mation that agents have is modeled as being drawn from distributions, and we expect agents

to best respond to the expected actions from other bidders. In (Bayes-Nash) equilibrium,

each agent best responds to the expected actions from other agents, taking expectation over

the private information of the other agents.

Optimal Auctions. Consider a designer trying to maximize revenue. If the designer (rather

unrealistically) knows exactly the bidder who values the resource the most and how much

they value it at, then the designer can simply charge that amount.

That process however is very unrealistic: at best, the designer might know the distri-

butions of values the agents have for the resource, or something about the distributions of

values. If all of the agents have independent and identically distributed private valuations for

the resource, Myerson [1981] showed that the auctioneer need only know one number about

the setting: the optimal reserve price. The optimal auction comes from running a first-price

auction with that reserve: solicit bids, and sell to the bidder who offers the highest bid that

is at least as high as the optimal reserve.
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Simple vs. Optimal. Even that single number is not essential: Bulow and Klemperer [1996]

showed that adding one more bidder to the auction is better than setting the optimal reserve

price. If there are at least two bidders, this implies that the revenue from the first-price

auction is at least half of the revenue of the first-price auction with the optimal reserve

price.

When the setting is even a little more realistic, however, both the optimal auction and

the behavior of bidders in the first-price auction become much more complicated: equilibria

of the first price auction become very hard to characterize1, and the optimal auction needs to

know the exact distributions of values from the agents rather than only the optimal reserve

price.

A core theme of this thesis is to push our understanding of the gap between simple and

optimal auctions into more settings: in the asymmetric settings mentioned above (Chap-

ter 3), and in settings with risk-averse bidders (Chapter 5). This is particularly important

because it is rare that a designer knows the exact setting she is designing for, the exact

distributions of values from the agents. Designing the perfect mechanism for the setting

that a designer thinks is the right setting may be useless if the setting is actually a little bit

different, and the mechanism’s performance is not robust. Wilson [1987] advocated for this

direction, in what is now known as the “Wilson Doctrine”: that as the exact details of the

decision making behavior from the agents are unknowable, we must focus on understand-

ing how robust mechanisms and auctions are to changes in the details of the setting, not

mechanisms that inherently depend and rely on the details.

1Vickrey [1961] posed the question of solving for equilibrium with two agents with private values drawn
uniformly from distinct intervals; the problem was not solved until a half century later by Kaplan and Zamir
[2012] with a very thorough case-based analysis.
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1.1. Truthfulness in Auctions

The traditional approach in mechanism design is to incentivize the strategic agents to

report their true inputs. The Vickrey-Clarke-Groves Mechanism, developed for single-item

auctions by Vickrey [1961], and then later generalized [Clarke, 1971; Groves, 1973], has a

truthful equilibrium that maximizes welfare in any quasi-linear setting.

Truthful auctions are very prevalent in theoretical work, because the assumption of truth-

ful reporting sidesteps a lot of the issues in design with strategic agents. If the agents are

truthful, the designer knows exactly the inputs and exactly the problem that needs to be

solved, and so can simply solve it with traditional algorithms.

In practice, truthful auctions are rarely found: they suffer when agents do not know their

exact values for an outcome, they are often sensitive to collusion [Ausubel and Milgrom,

2006], and as we will later see, simple versions of truthful auctions often suffer when bidders

are risk-averse. They can also suffer if the agents are wary of the auctioneer learning their

true information, for instance to take advantage of their situation the next time the auction

is run.

But among all of these negatives, there is a strong justification for the prevalence of

truthful auctions in theoretical analysis: the revelation principle, which tells us that any

non-truthful equilibrium of an auction can be mapped to a truthful equilibrium of a different

auction, that has the same outcomes and revenue and welfare.

Lemma 1.1 (The Revelation Principle [Myerson, 1981]). For any non-truthful Bayes-

Nash equilibrium of an auction A, there is an auction A′ with a truthful equilibrium that

implements the same outcomes and payments.
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The proof is simple: ask agents for their private information; then act as they would have

acted in the original auction with their private information.

As a result, when looking for the optimal auction for a given setting, we can restrict

our analysis to only the truthful auctions. However, the revelation mapping says nothing

about the simplicity of the revelation construction relative to the original non-revelation

mechanism. This construction relies fundamentally on the designer’s ability to simulate

exactly how agents will make decisions. While this is a part of an agents private information,

it is often not private information that can be easily reported: “how do you make decisions?”,

“what is your risk attitude?” are both questions that may be much harder to answer for

some agents rather than “how much would you like to pay for this?”.

Aside from the practical implementation details, the revelation mapping says nothing

about the robustness of the truthful equilibrium. It says nothing about the case that agents

only approximately best respond, or treat uncertainty differently than other agents.

This thesis focuses primarily on developing a robust, theoretical understanding of non-

revelation auctions. We do this both because they are more prevalent in the real world,

but also because non-truthful auctions are a closer model for the more general systems with

strategic agents. Even when real world auctioneers run “truthful” auctions, they can become

non-truthful if the setting changes even a little bit: for instance, if bidders are bidding in

many auctions over the course of a day or a week. For example, Facebook runs the “truthful”

Vickrey-Clarke-Groves auction [Varian and Harris, 2014]. However, if agents have a budget

constraint over the course of the day or a week, they may prefer to bid non-truthfully in the

auction and so the auction should be treated as non-truthful.
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1.2. Risk Aversion

Traditionally, auction theory assumes that agents are indifferent to uncertainty, that they

seek to maximize their expected wealth. This assumption leads to very tractable and elegant

results: like Myerson’s theorem of revenue equivalence between the first- and second-price

auction:

Theorem 1.2 (Symmetric Revenue Equivalence [Myerson, 1981]). For symmetric, risk-

neutral, single-item environments, the revenues of Bayes-Nash equilibria of the first- and

second-price auctions are identical.

When bidders are risk-averse however, revenue equivalence breaks down. A risk averse

bidder will bid higher in the first-price auction than a risk-neutral bidder will, to guarantee a

larger probability of winning (at the cost of paying more when she wins), leading to revenue

dominance rather than equivalence.

If we want to understand how to do computation subject to the laws of rational agents,

then we must build theories and build an understanding that is robust to these behaviors

and details of decision making. A theme explored in Chapter 5 is trying to understand what

features of our understanding of risk-neutral strategic design carry over to the risk-averse

setting.

The form of our results are generally comparisons between a simple auction that does

not depend on the details of the risk-attitudes of the bidders, with the optimal auction that

does depend on the details of the risk-attitudes of the bidders. This form of results aligns

well with the Wilson doctrine.
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1.3. Our Contributions

Theoretical Welfare and Revenue Analyses

In Chapter 3, we develop tools for welfare and revenue analysis of auctions in asymmetric

settings. Much of our contributions are based on a very simple analysis of a very simple

auction: the first-price auction, in single-item environments. We begin a simple proof of the

following theorem in Bayesian settings:

Theorem 1.3 (informal, [Syrgkanis, 2012]). For risk-neutral, asymmetric single-item

environments, the first price auction has good welfare.

The objective of welfare is a special one, because it is one in which the objectives of each

bidder are totally aligned with the objective of the designer.

For revenue, the incentives are much less aligned between bidders and the designer. To

adapt our approach to revenue, we use Myerson’s [1981] analysis of revenue to effectively

measure the alignment of incentives. When agents have positively aligned incentives, we can

reduce the analysis to welfare analysis. We then show that setting the right reserve prices

or ensuring agents face sufficient competition suffices to mitigate the impact of agents with

negatively aligned incentives.

Theorem 1.4 (informal). For risk-neutral, asymmetric, regular, single-item environ-

ments, the first price auction has good revenue with either a) the right reserve prices set, or

b) with sufficient competition.

Notably, this result is the first revenue approximation result of a non-truthful auction

without needing to solve for equilibrium.
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The first-price auction works well for revenue and welfare because of a nice property of

the auction: that if it is challenging for a bidder to win in the auction, it is for a good reason:

other bidders must already be bidding (and hence paying) a lot.

Property 1.1 (informal). An auction is revenue-covered if, when it is challenging for

bidders to win, the auction has good revenue.

Theorem 1.5 (informal). For any auction that (approximately) satisfies revenue cover-

ing, the welfare of the auction is (approximately) good, and the revenue is (approximately)

good, if the auction mitigates the impact of certain agents.

With this theorem, the only work needed to analyze the welfare of an auction becomes

analyzing the relationship between the challenge of winning in the auction and the revenue of

the auction. We do this analysis for a number of auctions, including pay-your-bid multi-item

auctions; all-pay single- and multi-item auctions; and the Generalized First Price position

auction.

For revenue, Theorem 1.5 gives a bound for the positively aligned agents. The caveat is

then that the auction must find a way to eliminate the impact of negatively aligned agents.

Traditionally this is done with reserve prices, but sufficient competition from similar agents

is also enough to give an approximation bound.

Price of Anarchy from Data

In Chapter 4, we build on the theoretical foundation in Chapter 3 with a key observation:

Observation 1.1 (informal). We can empirically estimate the relationship between how

hard it is to win and the expected revenue (revenue covering).



20

That is, if we are observing the data from an auction, we can measure an empirical

relationship between the challenge of winning and revenue, and then use the entire theoretical

framework of Chapter 3 to prove empirical price of anarchy bounds on the welfare of the

auction.

Effectively, the data that we need to measure the relationship is the revenue, and the data

needed to understand each bidder’s optimization problem. If there is enough data available

that a bidder can bid intelligently in the auction, then the designer can analyze the empirical

price of anarchy.

This can be done for any auction, particularly for auctions in which we cannot theoret-

ically bound the expected revenue against the challenge of winning. We analyze data from

the Generalized Second Price auction that is run on Microsoft’s BingAds platform, and find

a range of values, indicating that for some keywords the auction is performing very well, for

others there is a possibility for a large loss of welfare.

Risk-Averse Bidders

In Chapter 5, we consider the impact of risk-averse bidders on the performance of simple

auctions. We show that the first-price auction does well when bidders risk-preferences are

one of two types: “capacitated”, or have constant absolute risk aversion (CARA).

For capacitated bidders, we show that the revenue of the first price auction with at least

two bidders is a constant approximation to the revenue of the optimal auction.

For CARA bidders, we show the first-price auction is approximately optimal relative to

the first-price auction with the optimal reserve price. Namely, we show that the Bulow-

Klemperer approximation result for the first-price auction extends to the case of CARA

bidders, relative to the first-price auction with the optimal reserve. Our result makes use of
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a generalization of Myerson’s virtual-value based characterization of revenue to the CARA

setting.

The Utility Target Auction

In Chapter 6, we flip the nature of strategic behavior, and consider modifications in the

rules of an auction so as to support simpler strategic behavior. Notably, we take a revelation

principle like approach, and develop a quasi-truthful auction that has many of the features

of a non-truthful auction.

In position auctions, the most-natural extension of the first-price auction can lack equi-

libria in full-information settings. One approach to ensure equilibria is to solicit bids from

each agent for each possible position. However, as the number of possible outcomes rises,

the strategic complexity for agents becomes very high. We instead have agents report their

valuation function — which in the case of position auctions, can be very concise, like “value-

per-click” — and a single strategic bid, their “utility-target”. The utility-target auction has

good equilibrium performance, and in full-information settings, we show it has quasi-truthful

equilibria.

1.4. Organization

In Chapter 2, I introduce the fundamentals of the settings that we will be operating in.

I recommend reading Chapter 2 before other chapters, and Chapter 3 before Chapter 4; all

other chapters are fairly self-contained.
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CHAPTER 2

Model & Background

In this section, I give an introduction to single-parameter Bayesian mechanism design,

with a focus on understanding the behavior of simple auctions relative to optimal auctions,

and understanding the role of risk attitudes.

This model is the primary model used throughout this thesis. Chapters 3, 4, 5 all use the

single-parameter Bayesian Model, while Chapter 6 only differs in focusing on full-information

(non-Bayesian) settings.

The sections regarding risk-aversion are important for Chapter 5, and can be skipped for

readers interested only in the other chapters.

For a more thorough introduction to Bayesian mechanism design, the reader is encouraged

to see Hartline [2014].
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2.1. Mechanism Design & Auction Theory

A mechanism is an algorithm where the input comes from each of n strategic agents,

who have preferences over the outcome. In an auction, the outcome consists of a feasible

allocation x = (x1, . . . , xn) of a resource to the agents, and payments p = (p1, . . . , pn) made

by the agents to the designer. In such settings, we will treat the auction as consisting of an

allocation rule x̃ : An → Rn and payment rule p̃ : An → Rn as mapping actions to feasible

allocations and payments respectively1.

Agent Preferences. Each agent i chooses an action ai ∈ Ai, based on her own preferences

over the outcomes. We assume agents have single-dimensional preferences over the resource,

with a private value vi ∈ Vi for being allocated the resource. As we focus on Bayesian

environments, we model each agent’s value as being drawn independently from some known

distribution, vi ∼ Fi. This is known as the Independent Private Values (IPV) setting. The

symmetry of a setting refers generally to whether or not the value distributions are identical

across agents.

We call vixi− pi the wealth created for agent i and we assume that agents are expected-

utility maximizers over wealths. An agent’s utility for allocation xi and payment pi is

Ui(vixi − pi), and the agent’s utility when the actions a are played is

ũi(a) = Ui(vix̃i(a)− p̃i(a)). (2.1)

When there is uncertainty over the actions that other agents will play, then the agent

will seek to maximize her expected utility,

1 I will use boldface (a) to denote a vector, or a function that produces a vector. Subscripts will refer to the
elements in the vector: ai is the ith element of a, and a−i is the vector consisting of all but the ith element
of a.
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ũi(ai) = Ea−i [Ui(vix̃i(a)− p̃i(a))] . (2.2)

If Ui(w) = w, then we say the agent is risk-neutral. We primarily focus on the risk-neutral

case, but see Section 2.3 and Chapter 5 for discussions of the case when agents’ utilities are

non-linear.

Feasibility Environments. The feasibility environment describes the set of allowed allocations

by the auction. We will primarily operate in the single-item feasibility environment, where

one resource can be allocated to at most one agent, but many of the results will be generalized

to the following environments:

• Multi-item - assignments of m identical items to at most m of the n agents.

• Position Auctions - assignment of m ordered positions to at most m of the agents.

Used primarily in Internet advertising auctions, where the better the position, the

higher the probability is that a searcher will click on the advertisement.

• Combinatorial - assignments of m non-identical objects to at most m of the n agents,

with a set system denoting feasible allocations.

• Matroid - A combinatorial feasibility environment, where the set system of feasible

allocations forms a matroid. This includes the multi-item environment, as well as

other systems, like spanning trees in a graph where the base resource is the edges

in the graph.

We represent the set of feasible outcomes as X.
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2.1.1. Design Objectives

The designer of the mechanism has some objective over the outcomes and the agents. The

most common objectives are revenue, the sum of payments to the designer, and welfare, the

utility of the agents plus the payments to the designer.

2.1.2. Timeline of an Auction

The timeline of an auction is as follows:

(1) Agents realize private values, v ∼ F.

(2) Agents report actions a = s(v) in accordance with strategy profile s.

(3) The auction chooses allocations x̃(a), and charges payments p̃(a) to the bidders.

There are three important stages in the auction: before private values are realized (the

ex-ante stage), after private values have been realized, before actions have been reported (the

interim stage), and after the payments and allocations have been announced (the ex-post

stage).

Individual Rationality. Depending on the circumstance of the auction, agents may or may

not be able to walk away. For instance, if a mechanism instructs a bidder to pay $1 million

for an ad impression, the agent will likely refuse, and leave the auction.

We call this property individual rationality [IR]. There are three variants of individual

rationality, corresponding to the expected utilities in the three stages of the mechanism

(ex-ante, interim, ex-post).

2.1.3. Strategies & Equilibrium

A strategy profile s : V n → An maps values of agents to actions.



26

If agents are acting according to their own incentives and values, what should we expect

them to do? Nash [1951] introduced what we now call the Nash Equilibrium: a steady state

in which all agents are best-responding to the actions of other bidders. We focus primarily

on Bayes-Nash equilibrium, where the best responding happens over the uncertainty created

by other bidders random draws of valuations.

Definition 2.1. A strategy profile s is a Bayes-Nash Equilibrium (BNE) if for each agent

i and every realized value vi ∼ Fi and every alternate action a′i,

ũi(si(vi)) ≥ ũi(a
′
i). (2.3)

2.1.4. Types of Auctions

The majority of this thesis is focused on one of the simplest of auctions: the first-price

auction (FPA). In single item settings, the first-price auction solicits bids; the highest bidder

wins and pays her bid. In more complicated feasibility environments, the first-price auction

generalizes to the pay-your-bid mechanisms, in which agents submit bids, the auction chooses

a feasible allocation, and charges each agent who is allocated the resource her bid. Generally

the allocation is picked so as to either maximize or approximately maximize the sum of the

bids.

In the second-price auction (SPA), the auction solicits bids; the highest bidder wins and

pays the second-highest bid.

In the all-pay auction (AP), the auction solicits bids; the highest bidder wins and everyone

pays her bid.

Auctions can also have reserve prices, either individual by bidder or common across all

bidders. With a reserve price, the designer only considers bids above the reserve price.
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2.1.5. Bayesian Auction Theory

Given a strategy profile s, we often consider the expected allocation and payment an agent

faces from choosing an action ai ∈ Ai, with expectation taken with respect to other agents’

values and actions induced by s. We treat s implicitly and write x̃i(ai) = Ev−i [x̃i(ai, s−i(v−i))],

with p̃i(ai) and ũi(ai) defined analogously.

Given s implicitly, we also consider values as inducing payments and allocations. We

write x(v) = x̃(s(v)) and p(v) = p̃(s(v)), respectively. Furthermore, we can denote agent

i’s interim allocation probability and payment by xi(vi) = x̃i(si(vi)) and pi(vi) = p̃i(si(vi)).

We define u(v) and ui(vi) analogously. In general, we use a tilde to denote outcomes induced

by actions, and omit the tilde when indicating outcomes induced by values. We refer to x̃

as the bid allocation rule, to distinguish it from x, the allocation rule. We adopt a similar

convention with other notation.

Myerson [1981] showed that the value-based allocation rule of an auction is all that is

needed to characterize the expected payments in an auction (up to a constant factor):

Lemma 2.1 (Myerson [1981]). For any single-parameter, risk-neutral auction, the ex-

pected payment for agent i in BNE is:

pi(vi) = vixi(vi)−
∫ vi

0

xi(z) dz + C. (2.4)

Because the payment is decided entirely by the allocation rule, two auctions with the same

allocation rule must have the same revenue: up to the constant factor C in Equation (2.4)2.

This property is known as revenue equivalence.

2We generally assume that this constant is 0: if C is positive, then this will violate interim IR, as an agent
with no value for the item will be forced to pay; if C is negative, then the auctioneer is giving away free
money to all the agents.
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Corollary 2.2 (Revenue Equivalence). For risk-neutral, single-item environments, the

revenues of auctions with the same allocation rules are identical.

In symmetric settings, the highest bidder will win in Bayes-Nash Equilibrium of either

the first- or second-price auctions [Vickrey, 1961]. Thus the allocation rules and hence the

revenues will be the same:

Corollary 2.3 (Symmetric Revenue Equivalence). For symmetric, risk-neutral, single-

item environments, the revenues of the first- and second-price auctions are equivalent.

Note the structure of the payment rule: each bidders payment is influenced by the alloca-

tion rule of all of the agents with smaller values. Myerson [1981] gives an amortized analysis

of this impact of a bidder on higher valued agents.

Lemma 2.4. The revenue in any BNE s of auction A satisfies

Rev(A(s)) = Ev∼F

[∑
i

φi(vi)xi(vi)

]
, (2.5)

where φi(vi) is the virtual value of the agent, defined as

φi(vi) = vi −
1− Fi(vi)
fi(vi)

. (2.6)

The virtual value quantity plays the same role for revenue as the value does for the

objective of welfare: the revenue is measured as the expected virtual value of the agents

served. Note that the virtual value will always be smaller than the value. It can also be

either positive or negative, indicating that for some bidders, the auction would prefer to

completely exclude them from allocation.
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We will break down the revenue of an auction into the revenue gained by serving agents

with positive virtual values, and the revenue lost due to serving agents with negative virtual

values.

Definition 2.2. For any BNE s of auction A, let Rev+(A) and Rev−(A) be the virtual

surplus from agents with positive and negative virtual values, respectively. Thus,

Rev+(A) =
∑
i

Evi [max(0, φi(vi))xi(vi)] ,

Rev−(A) = −
∑
i

Evi [min(0, φi(vi))xi(vi)] ,

and Rev(A) = Rev+(A)−Rev−(A).

Quantiles and Revenue Curves. We will often refer to bidders of a given type by their

quantile within their distribution, 1 − Fi(v). Let the inverse be v(q) = F−1
i (1 − q). We

will lightly overload the value-based bid and allocation rules, and let xi(q) = xi(vi(q)) and

pi(q) = pi(vi(q)).

Consider posting a price of v(q) to a single bidder with value distribution Fi. The revenue

is qv(q), as a bidder has value at least v(q) with probability q. We refer to the plot of this as

the revenue curve of the distribution: see Figure 2.1 for an illustration of a revenue curve.

Lemma 2.5. The revenue in any BNE s of auction A satisfies

Rev(A(s)) =
∑
i

∫ 1

0

−x′i(q)Ri(q) dq, (2.7)

where the revenue curve Ri(q) = qvi(q) is the revenue from posting a price vi(q) = F−1
i (1−q)

to a single agent with value drawn from Fi.
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Figure 2.1. The revenue curve plots the revenue from setting a price to sell to
bidders in the top q fraction of bidders.

Note that because a larger quantile means a smaller value, the allocation is decreasing

in the quantile, hence x′i(q) < 0.

The virtual value quantity φ(v) is the derivative of the allocation rule:

R′(q) = vi(q)− (−v′i(q)q)

= vi −
1− Fi(vi)
fi(vi)

= φi(vi).

Note again that as quantile is decreasing in value, v′i(q) < 0.

Definition 2.3. A distribution F is regular if its revenue curve is concave, equivalently

if the virtual value φ(vi) = vi − 1−F (vi)
f(vi)

is monotone non-decreasing in v.

Since the virtual value does not depend on any property of the allocation rule, the

optimization problem of choosing the best allocation rule for revenue becomes easy: simply

allocate to the agent with the highest non-negative virtual value.
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In symmetric, regular settings, the agent with the highest virtual value is also the agent

with the highest value, so the optimal auction has a very simple form: run a second-price

auction with reserve set at φ−1(0). Setting that reserve eliminates any agents with negative

virtual value from being allocated, so Rev− = 0. A first price auction will induce the same

allocation rule, so by revenue equivalence (Lemma 2.2), a first-price auction with the same

reserve will also be optimal.

Theorem 2.6 ([Myerson, 1981]). In a single-item auction, with regular, risk-neutral

bidders, the optimal auction allocates to the bidder with the highest non-negative virtual

value.

Corollary 2.7. In a symmetric single-item auction with regular, risk-neutral bidders,

the optimal auction is implemented by either a first or second price auction with reserves r

set to satisfy φ−1
i (ri) = 0 for each bidder.

In asymmetric settings, the optimal auction for revenue does not have quite as simple a

form. The underlying allocation rule is still the same: allocate to the agent with the highest

non-negative virtual value, but this allocation rule will no longer be implemented by a first

or second price auction.

Lemma 2.8. For asymmetric, regular environments, the optimal auction is to run the

Vickrey-Clarke-Groves mechanism on virtual values of agents in place of the values of the

agents.

Note that this mechanism is now much more complicated than in symmetric settings:

the designer must know exactly the distribution of values of each agent so as to calculate



32

the virtual values. In the symmetric setting, the designer needed only to know or learn one

number, the optimal reserve price to set.

2.1.6. Simple vs. Optimal

In practice most auctions are simple: they do not allocate by virtual values, and oftentimes

they lack even the reserve price that is a fundamental piece of Myerson’s optimal auctions.

Bulow and Klemperer [1996] offered some theoretical justification for this in a very elegant

result: in symmetric risk-neutral settings, it is better to add one more agent to the auction

than implement the optimal reserve price. Thus, instead of expending effort to learn the

optimal reserve, the auctioneer can simply expend that effort trying to attract more bidders.

We will make strong use of a slightly differently phrased version of the result:

Theorem 2.9 (Bulow and Klemperer [1996]). For regular, symmetric, risk-neutral,

single-item environments, the revenue in the first- or second-price auctions with n agents

satisfies

Rev(FPA) = Rev(SPA) ≥ n− 1

n
Rev(Opt). (2.8)

Later, we will generalize Theorem 2.9 to the first-price auction in asymmetric settings

(Theorem 3.12), and with risk-averse bidders (Theorem 5.19).

I provide a proof to illustrate the underlying concepts for the simple symmetric and risk-

neutral case: both extensions will rely on tweaking the intuition developed through these

proofs.

Our proof will build on the split of revenue into the revenue due to agents with pos-

itive and negative virtual values. Let R+(q) =
∫ q

0
max(0, φi(z)) dz be the revenue curve

from positive virtual-valued agents (analogous to Rev+ from Definition 2.2). For regular
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(a) A comparison of the rev-
enue curve from positive vir-
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Revenue Curves

(b) A comparision of Rev and
Rev−. By the concavity of R,
Rev− ≤ Rev.

Figure 2.2. A comparison between the revenue curves and revenue from all
agents and only agents with positive virtual values.

environments, the monotonicity of the revenue curve then gives

R+(q) = max
q′≤q

R(q′) (2.9)

See Figure 2.2a for a comparison of the normal revenue curve and the revenue curve from

positive virtual valued agents.

We first give the proof for n = 2 to build intuition, and then provide the general proof. 3

Proof for n = 2. For the two agent setting, the allocation rule by quantile is x(q) =

(1−q). The expected revenue is then the area underneath the revenue curves: Rev(FPA) =

2
∫ 1

0
−x′(q)R(q) dq = 2

∫ 1

0
R(q) dq, and Rev+(FPA) = 2

∫ 1

0
R+(q) dq. See Figure 2.2a for

a comparison of the two revenue curves. The revenue lost due to negative virtual valued

agents is then the area between the curves, Rev−(FPA) = 2
∫ 1

0
(R+(q)−R(q)) dq.

3The geometric proof for two bidders is essentially the same proof as the two-bidder case by Dhangwatnotai
et al. [2010]; the generalization to the revenue curve versus losing probability plot is new.
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(a) A plot of the revenue curve R(q)
against 1− xi(q), for n = 2,3, and 4.
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Revenue Curve by Losing Prob.

(b) The concavity of R(q) in
q results in an upper bound
on Rev− which shrinks as n
grows.

Figure 2.3. A visual depiction of the proof of the Bulow-Klemperer Theo-
rem 2.9 for n = 2, 3, 4.

By the concavity of R(q) in q, Rev−(FPA) ≤ Rev(FPA), so

Rev(FPA) ≤ 1

2
Rev+(FPA) =

1

2
Rev+(Opt).

See Figure 2.2b for an illustration. �

The geometric interpretation for two agents relied on the simplicity of the quantile-

allocation rule: the allocation rule corresponded to a uniform distribution over the quantiles.

For n agents, the allocation rule corresponds to the maximum of n − 1 uniformly drawn

quantiles, so xi(q) = (1 − q)n−1 and x′i(q) = −(n − 1)(1 − q)n−2. Instead of the uniform

distribution, the distribution is weighted towards smaller quantiles, which serves to further

shrink Rev−(FPA).

We can generalize the geometric intuition for two agents to n agents by plotting the prob-

ability of losing for an agent (1− x(q)) against their revenue curve (R(q)). See Figure 2.3a.
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Proof for n ≥ 2 . For the n agents case, we have

Rev(FPA) = n

∫ 1

0

−x′i(q)R(q) dq (2.10)

= n

∫ 1

0

(
∂

∂q
(1− xi(q))

)
R(q) dq (2.11)

This integral is exactly the area underneath the parametric curve (1−xi(q), R(q)) from q = 0

to q = 1, pictured in Figure 2.3a for n = 1, 2, and 3.

Let q∗ be the optimal quantile. Using x′i(q) = −(n− 1)(1− q)n−2, we have

Rev(Opt) = n

∫ 1

0

−x′i(q)R+(q) dq (2.12)

= n

∫ q∗

0

(n− 1)(1− q)n−2R(q) dq + (1− q∗)n−1R(q∗) (2.13)

By concavity of R(q) in q, for any quantile between q∗ and 1,

R(q) ≥ 1− q
1− q∗

R(q∗). (2.14)

Plotting the right-hand side of Equation (2.14) against the losing probability results in

a lower bound that gains more curvature as the number of agents grows - see Figure 2.3b.

For the first price revenue we then have

Rev(FPA) =

∫ q∗

0

(n− 1)(1− q)n−2R(q) dq +

∫ 1

q∗
(n− 1)(1− q)n−2R(q) dq

≥
∫ q∗

0

(n− 1)(1− q)n−2R(q) dq +

∫ 1

q∗
(n− 1)(1− q)n−2 1− q

1− q∗
R(q∗) dq

=

∫ q∗

0

(n− 1)(1− q)n−2R(q) dq +
n− 1

n
R(q∗)(1− q)n−1

≥ n− 1

n
Rev(Opt). �
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The optimal auction for risk-neutral agents has two primary features: (1) agents are

picked in order of virtual values, and (2) no agents with negative virtual values are allocated.

In symmetric, regular environments, the first feature is easily attainable because a larger

value leads to a larger bid and a larger virtual value. So picking agents by bid or by value

is equivalent to picking them by virtual value. In the symmetric setting, Theorem 2.9 is

fundamentally about the value of the reserve, about bounding the impact of agents with

negative virtual values.

In the asymmetric setting, the first or second price auctions differ from the optimal

auction for both positive and negative virtual values. Hartline and Roughgarden [2009]

generalized Theorem 2.9 for asymmetric settings in which each agent has a duplicate bidder

with value drawn from the same distribution. They also isolated the effect of ranking by

value in place of virtual value, and showed a constant approximation for VCGr with the

right reserve prices set.

Theorem 2.10 (Hartline and Roughgarden [2009]). For regular, asymmetric, matroid,

risk-neutral environments, the revenue in the truthful equilibrium of VCG with duplicate

bidders is at least half the revenue of the optimal auction without duplicates.

In Chapter 3, we will provide analogous generalizations of the Bulow-Klemperer result

for the first-price and all-pay auctions in asymmetric settings.

2.2. The Price of Anarchy & Robust Analysis

Traditional equilibrium analysis comes from first characterizing equilibrium, then proving

properties of that equilibrium. Indeed, this is how the results so far have been shown:
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Theorems 2.6, 2.9 and 2.10 all stem from the assumption that either agents bid truthfully

or play symmetric strategies.

Koutsoupias and Papadimitriou [1999] introduced a style of analysis for understanding

the effect of selfish behavior on the efficiency of outcomes, the price of anarchy.

Definition 2.4. The Price of Anarchy of a game G, for (maximization) objective O is

PoA(G) = max
settings,Eq.

O(Opt)

O(G)
,

Smooth Games & Mechanisms. Roughgarden [2009] and Syrgkanis and Tardos [2013] provide

a robust approach to proving price of anarchy bounds for the objective of welfare in games like

auctions: that agents have a potential strategy not based on the actions of the other agents

which guarantees them a good fraction of utility if there is a good strategy for them. This

property is called smoothness. A core principle of smoothness is that the precise manner or

assumptions used in proving the smoothness property dictate how broadly the result extends:

whether it holds for instance when a number of auctions are run simultaneously.

In this thesis, we will make extensive use of price of anarchy based approaches to un-

derstanding equilibria. In Chapter 3, we will use smoothness type techniques specifically

applied to the Bayesian setting to derive simpler proofs of welfare bounds that have been

proven via smoothness, and to build the framework for our revenue approximation results.

In Chapter 4, we will present a refinement of the price of anarchy for empirical settings,

using the approach of worst-case analysis for robust inference of auction performance.
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2.3. Risk-Aversion

We generally assume in Auction Theory that agents are risk-neutral, that they try only to

maximize their expected payoffs. This enables simple and elegant analysis, as many problems

within mechanism design become linear and tractable. For example, in a symmetric, single-

item environment, Myerson’s payment identity (Lemma 2.1) and revenue equivalence tell us

that the first and second price auction will have the same revenue — as a designer, we can

then choose whichever auction we prefer.

But when agents are risk averse, this foundation of auction theory no longer applies: the

first- and second-price auction are not revenue equivalent, and the first-price auction usually

dominates the revenue of the second price auction.

In reality people care about risk and uncertainty. Most people will prefer a certain $1

million rather than a 50% shot at $3 million, even though the certain outcome is worse in

expectation. If trying to drive to the airport on time, a traveler will try and maximize the

probability she arrives on time, not just minimize expected travel time. If a buyer for a

company has approval to pay up to $1000 for a good, then she will be much more willing to

pay $1000 all the time rather than $1500 half the time, free the other half of the time.

In the single-item auction example, if bidders are risk-averse, then the first-price auction

will likely get much more revenue than the second-price auction as bidders are willing to

trade off a higher payment for a higher probability of winning. This behavior of revenue

dominance happens in many settings: later, we show it for two types of risk-averse bidders.

There are many ways of modeling the way that agents react to uncertainty. The most

standard approach, introduced by Von Neumann and Morgenstern [1944], is to assume that

agents have a utility function U : O → R which maps outcomes in some space O to a
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Utility (U(w))

Wealth (w)

Utility Function

Figure 2.4. A concave utility function, corresponding to a risk-averse bidder

cardinal value, the “utility” for that outcome, and that the agents act so as to maximize

their expected utility.

We will assume agents preferences are over the resulting wealth of outcomes: the value

created by the allocation, less any payment. So the problem of such an agent is the following:

max
a∈A

E [U(v(o(a))− p̃i(a))] (2.15)

If the utility function of a bidder is concave, the agent is risk-averse: the utility of the

average of two outcomes will be higher than the average utility of the outcomes. Likewise,

risk-seeking behavior corresponds to a convex utility function.

The more concave the utility function, the more risk averse the bidders are. The Arrow-

Pratt measure of absolute risk-aversion [Arrow, 1971; Pratt, 1964]:

A(w) = −U
′′(w)

U ′(w)
(2.16)

measures this at the wealth level w. When A(w) is constant, then the agent exhibits constant

absolute risk aversion (CARA), which means that an agents preferences are not affected by
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a shift in wealth: if the agent prefers a certain $4 to a 50% $10, 50% $0 , then the bidder

will also prefer a certain $104 to 50% $110, 50% $100.

We focus on the case that agents are expected utility maximizers, for tractability and as

a foundational point for analysis. Indeed, when agents are not expected utility maximizers,

many things get even more complicated: for instance, Nash’s foundational theorem that a

mixed nash equilibrium always exists no longer holds [Fiat and Papadimitriou, 2010].

2.3.1. Risk Averse Auction Theory

Auction analysis and design become significantly more complicated when bidders are risk-

averse. In first-price auctions, bidders with concave utilities over wealth bid higher than

they would have if risk-neutral, leading to increased revenue. For the second-price auction

however, risk-aversion has no effect - leading to revenue dominance of the first-price auc-

tion over the second-price, rather than the revenue equivalence of symmetric risk-neutral

settings [Riley and Samuelson, 1981; Holt, 1980; Maskin and Riley, 1984; Matthews, 1983].

For CARA bidders, revenue dominance comes at no cost, as the bidders are indifferent

between first- and second-price auctions, even though they pay more in expectation in the

first-price auction. Thus the increased revenue to the auctioneer is in effect free money —

revenue comes not at the expense of bidders’ utilities, but from giving them a payment

scheme that they are much happier with.

The optimal auction for revenue is also much more complicated, and is found usually

via optimal control [Matthews, 1983; Maskin and Riley, 1984]. The resulting auctions are

crucially dependent on the exact details of the utility function and distributions of the agents,

violating the Wilson Doctrine.
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In Chapter 5, we focus on developing simple-vs-optimal results for risk-averse bidders

which are particularly important given the challenge risk-aversion offers to the analyst and

designer.
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CHAPTER 3

Price of Anarchy Bounds for Auction Welfare & Revenue

In this chapter, we develop tools for welfare and revenue analysis in asymmetric settings.

Much of our contributions are based on a very simple analysis of a very simple auction:

the single-item, first-price auction. We then show that analysis of much more complicated

mechanisms can be reduced to the analysis of the first-price auction: and later, in Chapter 4,

we show that we can reduce the econometric analysis of other auctions to the theoretical

analysis of the simple first-price auction.
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3.1. Introduction

The first step of a classical microeconomic analysis is to solve for equilibrium. Conse-

quently, such analysis is restricted to settings for which equilibrium is analytically tractable;

these settings are often disappointingly idealistic. Methods from the price of anarchy provide

an alternative approach. Instead of solving for equilibrium, properties of equilibrium can be

quantified from consequences of best response. These methods have been primarily employed

for analyzing social welfare. While welfare is a fundamental economic objective, there are

many other properties of economic systems that are important to understand. This chapter

gives methods for analyzing the price of anarchy for revenue.

Equilibrium requires that each agent’s strategy be a best response to the strategies of

others. A typical price-of-anarchy analysis obtains a bound on the social welfare (the sum

of the revenue and all agent utilities) from a lower bound on an agent’s utility implied by

best response. Notice that the agents themselves are each directly attempting to optimize

a term in the objective. This property makes social welfare special among objectives. Can

simple best-response arguments be used to quantify and compare other objectives? This

chapter considers the objective of revenue, i.e., the sum of the agent payments. Notice that

each agent’s payment appears negatively in her utility and, therefore, she prefers smaller

payments; collectively the agents prefer smaller revenue.

The agenda of this chapter parallels a recent trend in mechanism design. Mechanism

design looks at identifying a mechanism with optimal performance in equilibrium. Opti-

mal mechanisms tend to be complicated and impractical; consequently, a recent branch of

mechanism design has looked at quantifying the loss between simple mechanisms and opti-

mal mechanisms. These simple (designed) mechanisms have carefully constructed equilibria
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(typically, the truthtelling equilibrium). The restriction to truthtelling equilibrium, though

convenient in theory, is problematic in practice [Ausubel and Milgrom, 2006]. In particular,

this truthtelling equilibrium is specific to an ideal agent model and tends to be especially

non-robust to out-of-model phenomena. The price of anarchy literature instead considers the

analysis of the performance of simple mechanisms absent a carefully constructed equilibrium.

As an example, consider the single-item first-price auction, in which agents place sealed

bids, the auctioneer selects the highest bidder to win, and the winner pays her bid. The

fundamental tradeoff faced by the agents in selecting a bidding strategy is that higher bids

correspond to higher chance of winning (which is good) but higher payments (which is bad).

This first-price auction is the most fundamental auction in practice and it is the role of

auction theory to understand its performance. When the agents’ values for the item are

drawn independently and identically, first-price equilibria are well-behaved: the symmetry

of the setting enables the easy solving for equilibrium [Krishna, 2009], the equilibrium is

unique [Chawla and Hartline, 2013; Lebrun, 2006; Maskin and Riley, 2003], and the highest

valued agent always wins (i.e., the social welfare is maximized). When the agents’ values

are non-identically distributed, analytically solving for equilibrium is notoriously difficult.

For example, Vickrey [1961] posed the question of solving for equilibrium with two agents

with values drawn uniformly from distinct intervals; this problem was finally resolved half a

century later by Kaplan and Zamir [2012].

Price-of-anarchy style analysis allows us to make general statements about behavior in

equilibrium without needing an analytical characterization of equilibrium. For example, a

recent analysis of Syrgkanis and Tardos [2013] shows that the first-price auction’s social

welfare in equilibrium is at least an e/(e − 1) ≈ 1.58 approximation to the optimal social

welfare, and moreover, this bound continues to hold if multiple items are sold simultaneously
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by independent first-price auctions. Importantly, this price-of-anarchy analysis sidesteps the

intractability of solving for equilibrium and instead derives its bounds from simple best-

response arguments.

3.1.1. Methods

Our analysis begins with the single-item, first-price auction. We break the analysis of welfare

into two parts: first, relating an agents contribution to equilibrium welfare to her expected

threshold prices for allocation, next relating the expected threshold prices for allocation to

the revenue of the auction for any actions, not only in BNE.

First-Price Revenue. We then use the characterization of revenue in Bayes-Nash equilibrium

of Myerson [1981] to re-purpose our welfare analysis for revenue. The same covering condition

that holds for bidders’ values also holds for their (positive) virtual values: if a bidder has a

positive virtual value, her contribution to virtual welfare in equilibrium and expected prices

for additional allocation combine to cover an (e− 1)/e fraction of her contribution to virtual

welfare in the optimal mechanism. If the revenue of the mechanism covers the the prices

agents see for additional allocation, then the virtual welfare from positive virtual valued

agents approximates the revenue of the revenue-optimal mechanism.

If the impact of negative virtual-valued agents is small enough, equilibrium revenue will

then approximate the optimal revenue. One such approach is to set monopoly reserve prices;

another approach is to ensure agents face competition from agents of their same type.

General Auction Reduction. We extend our analysis to general auctions in two steps. First,

we translate the payments in any auction into equivalent bids : the first-price bids or payments

if the payment rule of the mechanism used first-price semantics. This allows us to reduce the

optimization problem a bidder faces into the same problem a bidder in the first price auction
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faces. From this viewpoint we show that in a Bayes-Nash equilibrium of any auction an

agent’s contribution to welfare and her expected prices for additional allocation combine to

approximate an (e− 1)/e fraction of her contribution to welfare in the optimal mechanism.

Intuitively, either an agent’s utility and hence contribution to welfare is high, or the price

she has to pay for additional allocation is high relative to her value.

This leaves only the correspondence between the revenue of the general mechanism and

the prices agents see for allocation.

Revenue Covering. If for any auction, the prices agents see for allocation can be bounded

relative to the expected revenue, then we immediately get welfare and positive virtual surplus

bounds, proportional to the bound of prices for allocation to revenue.

If the prices agents see for additional allocation correspond directly or approximately

to the revenue of the mechanism, then combining across all agents implies that the welfare

and revenue in Bayes-Nash equilibrium combine to approximate the welfare of the optimal

mechanism. With reserve prices, considering only the agents with values above their reserve

gives an approximation result to the optimal auction subject to the same reserves.

3.1.2. Results

For single-item and single-dimensional matroid auctions (where the feasibility constraint is

given by a matroid set system), we give welfare and revenue price of anarchy results with

both first-price and all-pay payment semantics. The first-price variants of these auctions (a)

solicit bids, (b) choose an outcome to optimize the sum of the reported bids of served agents,

and (c) charge the agents that are served their bids. These first-price results are compatible

with reserve prices. The all-pay variants of these auctions (a) solicit bids, (b) choose an
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outcome to optimize the sum of the reported bids of served agents, and (c) charge all agents

their bids.

Welfare. In first-price auctions, we give a simple proof that the price of anarchy for

welfare is at most e/(e − 1). This result also extend to the generalized first-price position

auction. For all-pay auctions in the above environments, we show the price of anarchy for

welfare is at most 2e/(e−1). These proofs are new, though the results have appeared before

[Syrgkanis and Tardos, 2013].

Revenue. For first-price auctions with monopoly reserves in regular, single-parameter

environments, we show that the price of anarchy for revenue is at most 2e/(e − 1). The

same bound holds in the generalized first-price position auction with monopoly reserves. If

instead of reserves each bidder must compete with at least one duplicate bidder, the price of

anarchy for revenue in first-price auctions is at most 3e/(e− 1); in all-pay auctions, at most

4e/(e− 1).

Simultaneous Composition. We also show via an extension theorem that the above

bounds hold when auctions are run simultaneously if agents are unit-demand and single-

valued across the outcomes of the auctions.

Beyond the single-item first-price auction, we reduce the problem of analyzing the price

of anarchy for welfare and positive virtual surplus to analyzing one property of the rules

of the mechanism: revenue covering, corresponding to the relationship between the price of

allocation and the expected revenue of the auction.

If a mechanism is approximately revenue covered, then we immediately gain price of

anarchy results for both the welfare and the positive virtual surplus of the mechanism that

differ from the first-price results only in the revenue covering approximation factor.
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3.1.3. Related Work

Understanding welfare in games without solving for equilibrium is a central theme in the

smooth games framework of Roughgarden [2009] and the smooth mechanisms extension of

Syrgkanis and Tardos [2013]. A core principle of smoothness is that the precise manner

or assumptions used in proving the smoothness property dictate how broadly the result

extends. One view of our work is that we limit our proofs in just the right way that allows

for extensions to revenue approximations.

Our framework refines the smoothness framework for Bayesian games in three notable

ways. First, we decompose smoothness into two components, separating the specifics of a

mechanism from the actions of a best-responding agent in any auction equilibrium. Second,

because we focus on the optimization problem that individual bidders are facing, we can

attain results that only hold for certain bidders — for instance, bidders with values above

their reserve prices. Third, we only consider the Bayesian setting, which allows us to use the

BNE characterization of Myerson [1981] to approximate revenue and relate other auctions

to the first-price auction via equivalent bids.

A number of papers have looked at revenue guarantees for the welfare-optimal Vickrey-

Clarke-Groves (VCG) mechanism in asymmetric settings. Hartline and Roughgarden [2009]

show that VCG with monopoly reserves or duplicate bidders achieves revenue that is a

constant approximation to the revenue optimal auction. Dhangwatnotai et al. [2010] show

that the single-sample mechanism, essentially VCG using a single value from the distribution

as a reserve, achieves approximately optimal revenue in broader settings. Roughgarden et al.

[2012] showed that in broader environments, including matching settings, limiting the supply
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of items in relation to the number of bidders gives a constant approximation to the optimal

auction.

In the economics literature, Kirkegaard [2009] shows that understanding the ratios of

expected payoffs in equilibria of asymmetric auctions can be easier than understanding equi-

librium and lead to insights about equilibria. Kirkegaard [2012] shows that some properties

of distributions can be used to compare revenue of the first price auction to revenue of

the second price auction. Lebrun [2006] and Maskin and Riley [2003] establish equilibrium

uniqueness in the asymmetric setting with some assumptions on the distributions of agents.

3.2. Preliminaries

Bayesian Mechanisms. This chapter considers mechanisms for n single-dimensional agents

with linear utility. Each agent has a private value for service, vi, drawn independently from

a distribution Fi over valuation space Vi. We write F =
∏

i Fi and V =
∏

i Vi to denote the

joint value distribution and space of valuation profiles, respectively. A mechanism consists

of a bid allocation rule x̃ and a payment rule p̃, mapping actions of agents to allocations

and payments respectively. Each agent i draws their private value vi from Fi and selects an

action according to some strategy si : Vi → Ai, where Ai is the set of possible actions for

i. We write s = (s1, . . . , sn) to denote the vector of agents’ strategies. Given the actions

a = (a1, . . . , an) selected by each agent, the mechanism computes x̃(a) and p̃(a). Each

agent’s utility is ũi(a) = vix̃i(a)− p̃i(a).

Mechanisms typically operate with constraints on permissible allocations. A feasibility

environment specifies the set of feasible allocation vectors. Mechanisms for a feasibility

environment must choose only allocations from the feasible set. The simplest example is

a single-item auction, in which at most one person at a time can be served. This chapter
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assumes feasibility environments are downward-closed : if (x1, . . . , xk, . . . , xn) is feasible, so is

(x1, . . . , 0, . . . , xn). We will often consider the special case of matroid environments, in which

the set of feasible allocations correspond to the independent sets of a matroid set system.

Given a strategy profile s, we often consider the expected allocation and payment an

agent faces from choosing some action ai ∈ Ai, with expectation taken with respect to

other agents’ values and actions induced by s. We treat s as implicit and write x̃i(ai) =

Ev−i [x̃i(ai, s−i(v−i))], with p̃i(ai) and ũi(ai) defined analogously. Given s implicitly, we also

consider values as inducing payments and allocations. We write x(v) = x̃(s(v)) and p(v) =

p̃(s(v)), respectively. Furthermore, we can denote agent i’s interim allocation probability

and payment by xi(vi) = x̃i(si(vi)) and pi(vi) = p̃i(si(vi)). We define u(v) and ui(vi)

similarly. In general, we use a tilde to denote outcomes induced by actions, and omit the

tilde when indicating outcomes induced by values. We refer to x̃ as the bid allocation rule, to

distinguish it from x, the allocation rule. We adopt a similar convention with other notation.

Bayes-Nash Equilibrium. A strategy profile s is in Bayes-Nash equilibrium (BNE) if for all

agents i, si(vi) maximizes i’s interim utility, taken in expectation with respect to other

agents’ value distributions F−i and their actions induced by s. That is, for all i, vi, and

alternative actions a′: Ev−i [ũi(s(v))] ≥ Ev−i [ũi(a
′, s−i(v−i))].

Myerson [1981] characterizes the interim allocation and payment rules that arise in BNE.

These results are summarized in the following theorem.

Theorem 3.1 (Myerson, 1981). For any mechanism and value distribution F in BNE,

(1) (monotonicity) The interim allocation rule xi(vi) for each agent is monotone non-

decreasing in vi.

(2) (payment identity) The interim payment rule satisfies pi(vi) = vixi(vi)−
∫ vi

0
xi(z)dz.
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(3) (revenue equivalence) Mechanisms and equilibria which result in the same interim

allocation rule x must therefore have the same interim payments as well.

Mechanism Design Objectives. We consider the problem of maximizing two primary objec-

tives in expectation at BNE: utilitarian welfare and revenue. The revenue of a mechanism

M is the total payment of all agents. Mechanism M’s expected revenue for v ∼ F in

a given Bayes-Nash equilibrium s is denoted Rev(M) = Ev[
∑

i pi(v)]. The welfare of

a mechanism M is the total utility of all participants including the auctioneer; denoted

Welfare(M) = Rev(M) + Ev[
∑

i ui(v)] = Ev[vixi(v)]. We will also refer to welfare as

“surplus.”

Our welfare benchmark is the mechanism that always serves the highest valued feasible

agents. That is, we seek to approximate Welfare(Opt) = Ev[maxx∗
∑

i vix
∗
i ]. This can be

implemented via the Vickrey-Clarke-Groves (VCG) mechanism. We measure a mechanism

M’s welfare performance by the Bayesian price of anarchy for welfare, given by

max
F,s∈BNE(M,F)

Welfare(Opt)

Welfare(M)
,

where BNE(M,F) is the set of BNE for M under value distribution F.

For revenue, we will make extensive use of the characterization of revenue in Myerson

[1981] that follows from Theorem 3.1:

Lemma 3.2. In BNE, the ex ante expected payment of an agent is

Evi [pi(vi)] = Evi [φi(vi)xi(vi)] ,
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where φi(vi) = vi − 1−Fi(vi)
fi(vi)

is the virtual value for value vi. It follows that Rev(M) =

Ev[
∑

i pi(v)] = Ev[
∑

i φi(vi)xi(v)].

Using this result, Myerson [1981] derives the revenue-optimal mechanism for any value

distribution F. This mechanism is parameterized by the value distribution F, and the

optimality is in expectation over v ∼ F. We specifically consider distributions with no point

masses where φi(vi) is monotone in vi for each i. Such distributions are said to be regular.

If each agent has a regular distribution, then the revenue-optimal mechanism selects the

allocation which maximizes
∑

i φi(vi)xi(v). We will seek to characterize the Bayesian price

of anarchy for revenue,

max
F∈R,s∈BNE(M,F)

Rev(OptF)

Rev(M)
,

where R is the set of regular distributions and OptF is the Bayesian revenue-optimal mech-

anism for value distribution F.

3.3. Single-Item First Price Auction

We begin by analyzing the welfare of the first-price auction, showing that it always

approximates the welfare of the welfare-optimal mechanism. Subsequent results will use this

proof as a template.

Theorem 3.3. The welfare in any BNE of the first price auction is at least an e
e−1

-

approximation to the welfare of the welfare-optimal mechanism.

Our proof proceeds in two steps. First, we analyze the interim optimization problem

faced by every bidder. We quantify an intuitively obvious tradeoff: either that bidder can

obtain high expected utility, or the threshold bid below which they go unallocated tends
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x̃i(d)
1

Bid (d)vi

ũi(d)
x̃i(d)

d

Bid Allocation Rule

Figure 3.1. For any bid d, the area of a rectangle between (d, x̃i(d)) and (vi, 0)
on the bid allocation rule is the expected utility ũi(d). The BNE bid bi is
chosen to maximize this area.

to be high. Second, we note that these threshold bids are a lower bound on revenue. This

implies a tradeoff between revenue (seller welfare) and utilities (buyer welfare):

Util(FPA) + Rev(FPA) ≥ e−1
e
Welfare(Opt). (3.1)

This in turn will imply the theorem.

What to bid? We now develop ideas needed to make this analysis formal. Consider the

optimization problem faced by a bidder i with value vi in the first price auction. Bidder i’s

expected utility for a possible bid d is ũi(d) = (vi − d)x̃i(d), where x̃i(d) is the interim bid

allocation rule faced by the bidder. Let bi be her best response bid given her value vi. That

is, bi maximizes ũi(d). If we plot the bid allocation rule x̃i(d) for any alternate bid d, then

ũi(bi) is precisely the area of the rectangle in the lower right; see Figure 3.1.

When other bidders have realized values and submitted bids, bidder i wins only if her

bid exceeds both her reserve and the bids of other agents. Consequently the price a bidder

must pay to win is τi(v−i) = maxj 6=i bj(vj); we will formally refer to it as her threshold bid.
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ũi(bi)
vi−d

x̃i(d)

ũi(bi)

1

Bid (d)vi

x̃i(bi)

bi

ũi(bi)
vi

Bid Allocation Rule

(a) As bi is a best-
response to the actions of
other agents, the indifference
curve ũi(bi)/(vi − d) upper
bounds x̃i(d).

x̃i(d)
1

Bid (d)vi

ũi(bi)

Ti

x̃i(bi)

bi

Bid Allocation Rule

(b) The expected threshold
Ti is the area above the al-
location rule.

Figure 3.2. The indifference curve and expected threshold for a bidder in the
first-price auction.

As we are in the Bayesian setting, a bidder is not reacting to this threshold, but is acting

in expectation over the types and actions of her competitors. Consequently, each allocation

probability has a threshold price a bidder must pay to secure that chance of being allocated.

It is therefore convenient to refer to thresholds in these terms. Let τi(x) refer to the smallest

bid that achieves allocation of at least x, hence τi(x) = min{ b | x̃i(b) ≥ x}. Note that

τi(x) is the price an agent faces to attain allocation x. Also, note that τi(x) is effectively the

inverse of the cumulative distribution function of the highest bids from all other agents.

The expected threshold is Ti =
∫ 1

0
τi(z) dz. This is illustrated in Figure 3.2b. The ex-

pected threshold is the quantity we will be using to relate welfare contributions in equilibrium

and the optimal allocation.

Relating Contributions to First-Price and Optimal Welfare: We will now approximate each

bidder’s contribution to the optimal welfare individually, using the bidder’s utility in the

first-price auction and a fraction of the revenue in the first-price auction.
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Ti

x̃i(d)
1

Bid (d)vi

ũi(bi)

xi(vi)

bi

Bid Allocation Rule

(a) Lemma 3.4 shows the
shaded areas cover a (e−1)/e
fraction of the dashed box,
bidder i’s value vi and hence
maximum contribution to the
optimal welfare.

Ti

x̃i(d)
1

Bid (d)viφi(vi)

φi(vi)xi(vi)

xi(vi)

bi

Bid Allocation Rule

(b) Lemma 3.6 shows the
shaded areas cover an (e −
1)/e fraction of i’s virtual
value φi(vi).

Figure 3.3. Value covering and virtual value covering in the first-price auction.

In these terms, the steps to prove Theorem 3.3 are:

(1) Value Covering : Each bidder’s utility in the FPA and expected threshold together

approximate her value. (Lemma 3.4)

(2) Revenue Covering : The revenue of the FPA approximates the expected thresholds

of all agents. (Lemma 3.5)

The final approximation result follows by summing the value covering inequality across

agents, taking expectation over values, and combining with revenue covering.

Lemma 3.4 (Value Covering). In any BNE of FPA, for any bidder i with value vi,

ui(vi) + Ti ≥ e−1
e
vi. (3.2)

Proof. We will prove value covering in two steps: first, by developing a lower bound T

on the expected threshold Ti; second, by optimizing to get the worst such bound. The proof
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can also be done using a modification of the first-price bid deviation approach of Syrgkanis

and Tardos [2013].

Lowerbounding T . In best responding, bidder i chooses an action which maximizes

her utility. If bi is a best response bid, then for any alternate bid d, ũi(bi) ≥ (vi − d)x̃i(d),

hence x̃i(d) ≤ ũi(bi)
vi−d . The upperbound ũi(bi)

vi−d is an indifference curve for bidder i; it is the

alternate bid allocation rule that would lead to her being indifferent over all reasonable bids

(see Figure 3.2a). The area above the indifference curve gives a lower bound on the expected

threshold; call the lower bound T i =
∫ 1

0
max(0, vi − ui(vi)/z) dz.

Worst-case T i. Evaluating the integral for T i gives T i = vi− ui(vi)(1− ln ui(vi)
vi

), hence

ui + T i = vi + ui ln
ui(vi)
vi

. Holding vi fixed and minimizing with respect to ui(vi) yields a

minimum at ui(vi) = vi/e, hence ui(vi) + T i ≥ e−1
e
vi and as desired

ui(vi) + Ti ≥ e−1
e
vi. (3.3)

Note that this analysis depended only on the fact that bidder i was best responding to

a bid distribution - this will allow us to generalize the lemma later. �

We now show that in the first price auction the expected revenue is greater than the

expected threshold, which we can then combine with value covering to give a welfare ap-

proximation result. While value covering depended only on equilibrium bidding behavior,

revenue covering will only depend on the form of the first price auction, and will thus hold

for arbitrary (not necessarily BNE) bidding strategies.

Lemma 3.5 (Revenue Covering). For any agent i, Rev(FPA) ≥ Ti.
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Proof. The revenue of a first price auction is the expected highest bid, and Ti is the

expected highest bid from all agents except i. The result follows. �

We now combine value and revenue covering to attain an approximation to the optimal

welfare.

Proof of Theorem 3.3. First, for each agent i with value vi, combining value and

revenue covering gives

ui(vi) + Rev(FPA) ≥ e− 1

e
vi.

Let x∗(v) be the optimal allocation. For any agent, x∗i (vi) ≤ 1, hence

ui(vi) + x∗i (vi)Rev(FPA) ≥ x∗i (vi)ui(vi) + x∗i (vi)Rev(FPA) ≥ x∗i (vi)
e− 1

e
vi.

Summing over all agents and taking expectation over values gives

Util(FPA) + Rev(FPA) ≥ e− 1

e
Welfare(Opt).

As Welfare(FPA) = Util(FPA) + Rev(FPA), Welfare(FPA) is then an e/(e − 1)

approximation to Opt. �

3.3.1. Welfare Lower Bounds

The approximation results we have given in this section for the single-item first-price auction

are not known to be tight. For welfare with no reserves, the price of anarchy can be as bad

as 1.15; we give such an example in Appendix A.1. Note the large gap between this lower

bound and the upper bound of e
e−1
≈ 1.58 from Theorem 3.3 and Syrgkanis and Tardos

[2013].



58

Beyond a single auction, Christodoulou et al. [2013] have shown that the e
e−1

bound

is tight for the simultaneous composition of item auctions when bidders have submodular

valuations.

3.4. Revenue Approximation

Our welfare result hinged on the complementary relationship between the utility of a

bidder and the bids of other bidders in the mechanism. Using this relationship to directly

bound revenue is not as straightforward. The results of Myerson [1981], however, provide

another method of accounting for each bidder’s impact on revenue, their virtual value. Using

virtual values in place of utilities allows us to adapt our method for proving welfare results

to the objective of revenue.

3.4.1. Revenue

The welfare of a mechanism can be expressed as the expected total value of agents who

are served. Myerson [1981] demonstrated a similar characterization of revenue in terms of

the expected total virtual value, reducing the problem of revenue maximiation to welfare

maximization. We adopt a similar approach, using virtual values to reuse our tools from

welfare analysis.

We will begin by showing the analogue of value covering, virtual value covering, in which

each bidder’s positive contribution to equilibrium virtual welfare and expected threshold bid

combine to approximate her contribution to the optimal revenue, which by Myerson [1981]

is the optimal virtual welfare.
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Lemma 3.6 (Virtual Value Covering). In any BNE of FPA, for any bidder i with value

vi such that φi(vi) ≥ 0,

φi(vi)xi(vi) + Ti ≥ e−1
e
φi(vi). (3.4)

Proof. First, note that the virtual value is defined as φi(vi) = vi − 1−Fi(vi)
fi(vi)

. The second

term is always nonnegative, so φi(vi) ≤ vi. Moreover, note that vixi(vi) ≥ ui(vi), so

1
φi(vi)

(φi(vi)xi(vi) + Ti) ≥ 1
vi

(vixi(vi) + Ti) ≥ 1
vi

(ui(vi) + Ti) ≥ e−1
e
.

See Figure 3.3b for an illustration. Intuitively, value covering captured the idea that the

expected threshold made up the difference between an agent’s utility and their value. The

difference between virtual surplus and virtual value is proportionally smaller, so the expected

threshold can cover that gap as well. �

This approximation holds for agents with positive virtual values. To mitigate the impact

of agents with negative virtual values, one approach is to implement reserve prices.

3.4.2. Reserve Prices

We consider first price auctions with a reserve set to exclude exactly the agents with negative

virtual values. Under the assumption that bidders’ value distributions are regular, it suffices

to set monopoly reserves at ri = φ−1
i (0).

However, introducing reserves to a first price auction affects the relationship between

threshold bids and revenue, and therefore revenue covering does not hold. Introducing

reserves to an auction inflates the threshold bids an agent sees - when all other bidders are

bidding low, the reserve binds as a minimum bid the agent must place. Unlike other agents’
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bids, this reserve does not directly correspond to revenue - in fact, holding a bid distribution

fixed and introducing reserves will actually lower the revenue of a first-price auction.

This inflation only occurs when all other bidders bid below the reserve. When this is

not the case, an agent’s threshold bid still corresponds to revenue. In other words, a weaker

version of revenue covering still holds for the auction with reserves.

To capture this notion, we will define exactly the portion of the expected threshold still

corresponding to bids. As before, τi(x) refers to the smallest bid that achieves allocation

of at least x. Now, however, note that below x̃i(ri) no longer corresponds to the inverse

cumulative distribution function of the highest bids from all other agents. Above this point,

however, the correspondence to bids remains the same as without reserves. For any bid y,

we therefore define the expected threshold above y to be T yi =
∫ 1

x̃i(y)
τi(z) dz. With y = ri,

the expected threshold above ri is precisely the portion of the expected threshold generated

by bids. See Figure 3.4a for an illustration.

We now prove a weaker notion of value covering using T rii and the payment of an agent

to make up for the loss of revenue corresponding to threshold bids below the reserve. See

Figure 3.4b for an illustration.

Lemma 3.7 (Value Covering with Reserves). In any BNE of FPAr, for any bidder i

with value vi ≥ ri,

vixi(vi) + T rii ≥ e−1
e
vi. (3.5)

Proof. In BNE, if your value is above the reserve, you will bid at least the reserve. Then

T rii + pi(vi) = T rii + bi(vi)xi(vi) ≥ T rii + rix̃i(ri) = Ti. The proof mimics that of Lemma 3.4,

with T rii + pi(vi) in place of Ti. �



61

T rii

x̃i(d)
1

Bid (d)ri

xi(vi)

Bid Allocation Rule

(a) In a first-price auction
with reserve ri, the threshold
above ri, T

ri
i , only includes

the thresholds when greater
than ri, which corresponds to
the case that the threshold is
from a bid from another agent
rather than the reserve.

T rii

x̃i(d)
1

Bid (d)viri

vixi(vi)

xi(vi)

bi

Bid Allocation Rule

(b) Lemma 3.7 shows that
vixi(vi) and T rii cover an (e−
1)/e fraction of i’s value vi,
because vixi(vi) − ui(vi) =
bixi(vi) covers Ti − T rii

Figure 3.4. The effect of a reserve price on the first-price expected thresholds
and value covering.

As previously mentioned, the thresholds for bidder i above ri correspond to bids from

other agents. It follows that this portion of i’s expected threshold corresponds to revenue.

We can formalize this with the following lemma:

Lemma 3.8 (Revenue Covering with Reserves). For any agent i, Rev(FPAr) ≥ T rii .

Just as in the no-reserves case, value covering and revenue covering with reserves combine

to give a welfare approximation result relative to the welfare-optimal auction with those same

reserves as our benchmark. The weaker version of value covering requires the use of an extra

copy of the auction revenue, adding a factor of two to the bound.

Theorem 3.9. The welfare in any BNE of the first price auction with reserves r is at

least an 2e
e−1

-approximation to the welfare of the welfare-optimal mechanism with those same

reserves, Optr.
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Proof. Take any bidder i with vi ≥ ri. Combining value covering and revenue covering

with reserves gives

vixi(vi) + Rev(FPAr) ≥
e− 1

e
vi. (3.6)

Let x∗(v) be the optimal allocation. As before, x∗i (vi) ≤ 1, hence

vixi(vi) + x∗i (vi)Rev(FPAr) ≥ x∗i (vi)vixi(vi) + x∗i (vi)Rev(FPAr) ≥ x∗i (vi)
e− 1

e
vi. (3.7)

For any agents with vi < ri, (3.7) holds as well, as x∗i (vi) = 0 for such agents. We can

therefore sum (3.7) over all agents and take expectation over values to get Util(FPAr) +

Rev(FPAr) ≥ e−1
e
Welfare(Optr). As Welfare(FPAr) = Util(FPAr) + Rev(FPAr),

Welfare(FPAr) is then an 2e/(e− 1) approximation to Optr. �

To derive a revenue result, we can make the necessary modification to virtual value

covering to get:

Lemma 3.10 (Virtual Value Covering with Reserves). In any BNE of FPAr, for any

bidder i with value vi ≥ ri such that φi(vi) ≥ 0,

φi(vi)xi(vi) + T rii ≥ e−1
e
φi(vi). (3.8)

Proof. The lemma follows from value covering with reserves exactly as Lemma 3.6 follows

from Lemma 3.4. �

With regular value distributions, adding the monopoly reserves r∗i = φ−1
i (0) to the auction

excludes exactly the agents with negative virtual values. It follows that for such reserves,

(3.8) holds whenever vi ≥ r∗i .
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In regular environments the optimal mechanism for revenue allocates the item to the

agent with the highest positive virtual value. Approximating the optimal revenue is there-

fore equivalent to approximating this agent’s expected virtual value. By adapting revenue

covering and virtual value covering to first price auction with reserves, though, we are able

to treat this quantity much as we treated welfare, yielding the following:

Theorem 3.11. The revenue in any BNE of the first price auction with monopoly re-

serves (FPAr∗) and agents with regularly distributed values is at least a 2e/(e− 1) approxi-

mation to the revenue of the optimal auction.

Proof. The proof mirrors that of Theorem 3.9. First, take any bidder i with vi ≥ r∗i .

Combining Lemmas 3.8 and 3.10 yields:

φi(vi)xi(vi) + Rev(FPAr) ≥
e− 1

e
φi(vi). (3.9)

Let x∗(v) be the optimal allocation. As before, x∗i (vi) ≤ 1, hence

φi(vi)xi(vi) + x∗i (vi)Rev(FPA) ≥ x∗i (vi)
e− 1

e
φi(vi). (3.10)

For any agents with vi < ri, (3.10) holds as well, as x∗i (vi) = 0 for such agents. We can

therefore sum (3.10) over all agents and take expectation over values to get Rev(FPAr∗) +

Rev(FPAr∗) ≥ e−1
e
Rev(Opt), yielding the desired result. �
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3.4.3. Duplicate bidders

Another approach to mitigating the impact of negative virtual-valued agents is to ensure

each agent faces adequate competition. Bulow and Klemperer [1996] show that this intuition

guarantees approximately optimal revenue in regular, symmetric, single-item settings.

We show the same intuition holds for first-price auctions in asymmetric settings: if each

bidder must compete with at least k − 1 other bidders with values drawn from her same

distribution, revenue is approximately optimal compared to the revenue-optimal mechanism

(including the duplicate bidders). We say such a setting satisfies k-duplicates.

Theorem 3.12. The revenue in any BNE of the first price auction with k-duplicates

(FPAk) and agents with regularly distribution values is at least a k
k−1

2e
e−1

approximation to

the revenue of the optimal auction.

The proof is included in Appendix A.3.

3.4.4. Revenue Lower Bounds

For revenue, the approximation ratio can be at least as bad as 2, using the same lower bound

Hartline and Roughgarden [2009] show for VCG with monopoly reserves. The example has

two bidders, one with deterministic value 1, the other with value drawn according to the equal

revenue distribution with support over [1, H] for some large H. With a light perturbation of

the distribution the monopoly price for the second bidder is 1. Assuming ties go to bidder

2, an equilibrium exists where both agents bid 1, giving revenue of 1. The optimal auction

however can set a reserve of H for the second bidder and sell to the first bidder at price 1 if

the reserve is not met, achieving a revenue of 2 as H grows.
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3.5. Beyond Single-Item

Two main ideas drove the single-item welfare (Theorem 3.3) and revenue (Theorem 3.11)

results. The first idea, value covering (resp. virtual value covering), captured the tradeoff

between an agent’s threshold bid and their utility (resp. virtual surplus). This idea depends

only on a bidder’s interim optimization problem, which is the same in every pay-your-bid

auction. We can extend the single-item proof to get:

Lemma 3.13 (Pay-Your-Bid Value Covering). In any BNE of a pay-your-bid auction,

for any bidder i with value vi,

ui(vi) + Ti ≥ e−1
e
vi. (3.11)

The second idea, revenue covering, captured the correspondence between threshold bids

and mechanism revenue. With a general feasibility constraint, revenue covering in the single-

item sense may not hold. However, a weaker, parameterized notion might, and when it does

we will be able to derive similar, parameterized results.

Definition 3.1 (µ-Revenue Covering). A mechanism M is µ-revenue covered if for any

(implicit) distribution of actions and feasible allocation x′,

µRev(M) ≥
∑

i
Tix
′
i.

There are two key differences between Definition 3.1 and its single-item counterpart.

First, the additional parameter µ allows the relationship between revenue and thresholds to

be weaker. Second, we require a sum on the right-hand side because multiple agents might

be feasibly allocated.
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As in the single-item setting, revenue covering and value covering imply approximation

results. We can combine revenue and value covering using the logic that drove the proof of

Theorem 3.3. Summing inequality (3.11) over all bidders, applying revenue covering, and

taking expectations with respect to v yields the following:

Theorem 3.14. The welfare of any µ-revenue covered pay-your-bid mechanism is a µ e
e−1

-

approximation to the welfare of any other mechanism.

Note that a tighter analysis of value-covering making use of the parameter µ can give a

bound of µ
1−e−µ (see Syrgkanis and Tardos [2013]). We do not include the analysis because

it is not extend to results for revenue.

The virtual value covering results for single-item auctions with and without reserves

hold also without modification in general pay-your-bid auctions. They require only value

covering, pay-your-bid semantics, and Myerson’s virtual value characterization, all of which

are agnostic to feasibility constraints. For example:

Lemma 3.15. In any BNE of any pay-your-bid auction with reserves r, for any bidder

i with value vi ≥ ri and φi(vi) ≥ 0,

φi(vi)xi(vi) + T rii ≥ e−1
e
φi(vi).

Because of Lemma 3.15, any µ-revenue covered mechanism achieves approximately opti-

mal revenue. As with Theorem 3.14, we can sum, apply revenue covering, and take expec-

tations to yield:
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Theorem 3.16. The revenue of any µ-revenue covered pay-your-bid mechanism with

regular bidders and monopoly reserves is a µ e
e−1

-approximation to the welfare of any other

mechanism.

We now show how to derive revenue covering results for environments beyond single-item

auctions. We will see in Section 3.5.1 that the pay-your-bid auction with a matroid feasibility

constraint is 1-revenue covered like its single-item counterpart, but beyond matroid feasibility

constraints may not be revenue covered. In combinatorial settings, using a greedy algorithm

instead of the optimal algorithm gives a better revenue covering result (Section 3.5.2). In

Section 3.5.3 we discuss the revenue covering of the generalized-first-price position auction,

and in Section 3.5.4 we discuss pay-your-bid auctions with a discretized bid space. In all

cases, welfare and revenue results follow as corollaries.

3.5.1. First Price Matroid Auctions

In the single-item setting, both the revenue and the losers’ critical bids were the bid of the

unique winner. In matroid settings, multiple winners complicates this relationship. Using

standard matroid properties, we show how to untangle the relationship between critical bids

and winners’ payments. We get as a corollary approximation guarantees identical to those

achieved in the single-item case. In particular, we derive:

Lemma 3.17. The first-price auction is 1-revenue covered in any matroid feasibility

environment.

As corollaries, we have:
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Theorem 3.18. The welfare of the first price matroid auction is at least an e/(e − 1)-

approximation to that of any other mechanism.

Theorem 3.19. For the first price matroid auction with monopoly reserves and regular

bidders, the revenue of any BNE is at least a 2e/(e− 1)-approximation to that of any other

mechanism.

We first develop the matroid-specific tools we need to relate bids (and therefore revenue)

to the thresholds agents see. To do so, we use a property related to a result from Talwar

[2003] for VCG in matroid environments.

Lemma 3.20. For any strategy profile s, value profile v and feasible allocation x′,

∑
i
si(vi)xi(v) ≥

∑
i
τi(v−i)x

′
i. (3.12)

The proof is based on the following matroid property:

Lemma 3.21 (Replacement Property). Let S1 and S2 be independent sets of size k in

a matroid M. Then there is a bijective function f : S2 \ S1 → S1 \ S2 such that, for every

i ∈ S2 \ S1, the set (S1 \ {f(i)}) ∪ {i} is independent in M.

Proof of Lemma 3.20. Because subsets of feasible allocations are feasible, threshold

bids are nonnegative, so we only need consider allocations x′ which are bases. Let S and S ′

be sets served by x and x′, respectively. Since bids are nonnegative, it follows that S and

S ′ are the same size. By Lemma 3.21, there exists a bijection f from S ′ \ S to S \ S ′ with

the replacement property in the lemma. For each i ∈ S ′ \S, sf(i)(vf(i)) ≥ τi(v−i), as if i bids

above sf(i), then (S \ {f(i)}) ∪ {i} would be optimal and therefore i would be allocated in
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BNE. For each i ∈ S ′ ∩ S, i was served in x(v), it must be that si(vi) ≥ τi(v−i). The result

follows by summing over i. �

Note that this proof extends to any auction in a matroid environment where agents

submit bids, and the mechanism selects a basis maximizing the sum of selected bids. We

will make use of this lemma once more when discussing all-pay auctions.

Having established a relationship between threshold bids and bids made by the basis se-

lected by the mechanism, proving revenue covering is simply a matter of taking expectations.

Lemma 3.22. The first-price matroid auction is 1-revenue covered.

Proof. Consider some alternate allocation x′ and action profile a. By the mechanism’s

payment scheme and Lemma 3.20,

Rev(M) = Ev

[∑
i
si(vi)xi(v)

]
≥ Ev

[∑
i
τi(v−i)x

′
i

]
=
∑

i
Ev [τi(v−i)]x

′
i.

The result follows from the observation that Ev[τ
b
i (v−i)] = Ti. �

Having proven revenue covering, value covering, and virtual value covering with reserves,

Theorems 3.18 and 3.19 follow from the analysis in the previous section.

3.5.2. Combinatorial Pay-Your-Bid Auctions

In this section we consider the single-minded combinatorial auction setting. We analyze

two different pay-your-bid mechanisms: one which allocates to the bid-maximizing set of

bidders, and one which allocates greedily. The former mechanism can fall short of optimal

by a factor of m, the number of items. It is known from Lucier and Borodin [2010], though,

that the former mechanism has a price of anarchy of
√
m e

e−1
. We frame these two results in
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terms of revenue covering - the former mechanism is not µ-revenue covered for any µ < m,

whereas the greedy mechanism is
√
m-revenue covered. (As a corollary, the revenue of the

greedy mechanism with monopoly reserves is within a factor of (
√
m + 1) e

e−1
of optimal,

when bidders have regular distributions.) This comparative analysis suggests the power of

revenue covering as a design objective.

Single-Minded Combinatorial Auctions. In a single-minded combinatorial auction feasibility

environment, there are m indivisible items. Each bidder i wishes to acquire a set of items

Si - she receives value vi for receiving any superset of Si, and value 0 otherwise. A 0 − 1

allocation vector x is feasible if and only if it is possible to simultaneously allocate Si to each

i with xi = 1.

Highest-Bids-Win Mechanism. The highest-bids-win mechanism allocates to a feasible set

of agents which maximizes the sum of bids of winners. This is the optimal allocation in

the absence of incentives. With incentives, the following example shows that this allocation

scheme performs poorly under pay-your-bid semantics:

Consider a setting with m items and m + 2 bidders. The first m bidders each want a

single item - bidder j wants item j, each with a value for allocation of 1, deterministically.

The final two bidders, meanwhile, each want the grand bundle of all m items, with values

of 1 + ε, again deterministically. With appropriate tiebreaking, it is a BNE for each of the

first m agents to bid 0, while the final two bidders bid 1 + ε. The optimal social welfare and

revenue are both attained by selling to the first m bidders, for welfare and revenue of m,

yielding a price of anarchy of m for both welfare and revenue.

This equilibrium also shows that the highest-bids-win mechanism isn’t µ-revenue covered

for any µ < m. First, note that the total revenue of the mechanism is 1 + ε. Next, consider

the feasible allocation x′ which allocates the first m bidders. For these bidders, they must
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bid at least 1 + ε to get allocated, at which point they get allocated with probability 1.

It follows that for such bidders, Ti = 1 + ε, and hence
∑

i Tix
′
i = (1 + ε)m, m times the

mechanism’s revenue.

Greedy Allocation Mechanism. The greedy allocation mechanism sorts bidders in non-increas-

ing order of si/
√
|Si|, where si is the bid of agent i. In this order, it then adds bidders to

the winning set whenever doing so would maintain feasibility. The greedy allocation rule is

suboptimal in the absence of incentives. With pay-your-bid semantics, however, it is
√
m-

revenue covered. In other words, the greedy rule possesses better incentive properties than

highest-bids-win. The welfare result of Lucier and Borodin [2010] and a revenue result (with

monopoly reserves and regular bidders) follow as a corollary.

The proof proceeds in three steps. First, we note that, absent any inefficiency caused

from incentives, the greedy allocation rule only loses a factor of
√
m compared to the highest-

bids-win rule. Formally:

Lemma 3.23. Let x(s) be the allocation selected by the greedy allocation rule, and x′ be

any other feasible allocation. Then

∑
i
six(s) ≥

√
m
∑

i
six
′.

Refer to Lehmann et al. [2002] for a proof.

Next, we note that the greedy allocation rule lacks a pathology that ruined the welfare

under highest-bids-win in our example. In the example, the high bids of the (m + 1)st and

(m+ 2)nd bidders discouraged participation from the other bidders - individually, a bidder

would have to bid 1 + ε to win. As a group, though, the losing bidders could have all bid



72

slightly more and won. The difficulty of allocation was not accurately reflected by the we

threshold bids. The greedy allocation rule lacks this problem. Formally:

Lemma 3.24. Let s be a profile of bids, let τi(s−i) be the critical price of bidder i under

the greedy allocation rule, and let x(s) be the corresponding allocation function. Further let s′

be any profile of bids such that if xi(s) = 1, then s′i = si, and if xi(s) = 0, then s′i ≤ τi(s−i).

Then x(s) = x(s′).

Proof. Imagine changing s to s′ by increasing one loser’s bid at a time. Each time

we increase a bid, say, of bidder i, two things remain true: (1) i still loses - as long as

s′i ≤ τi(s−i), i is after some other winning agent in the ordering, who wins some item in Si.

(2) the threshold of every other losing agent i′ remains unchanged - i′ still wins if and only

if si′ high enough to precede in the ordering all winners who get items in their set, which is

not affected by i’s bid as long as i still loses. �

Finally, we note that these two properties are enough to guarantee
√
m-revenue covering.

Lemma 3.25. The pay-your-bid greedy combinatorial auction is
√
m-revenue covered.

Proof. We argue that for any strategy profile s, value profile v, and alternate allocation

x′, ∑
i
si(vi)xi(v) ≥ 1√

m

∑
i
τi(v−i)x

′
i.

Taking the expectation of both sides yields the desired inequality.
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Let s′ be a vector of bids where losers under s(v) bid τi(v), while winners bid as before.

The following inequalities hold, with justifications after.

∑
i
si(vi)xi(v) =

∑
i
s′ixi(v)

=
∑

i
s′ixi(s

′
i)

≥ 1√
m

∑
i
s′ix
′
i

≥ 1√
m

∑
i
τi(v−i)x

′
i.

The first line holds because s′ differs from s(v) only on the bids of losing agents. The

second follows from Lemma 3.24, and the third from Lemma 3.23. The last line follows

from the fact that s′ doesn’t change the bids of winners under s(v), and for those agents,

si(vi) ≥ τi(v−i). �

An interpretation of this result is that the pay-your-bid greedy mechanism’s welfare loss

from incentives is limited to the multiplicative e
e−1

factor that appears in value covering.

The following hold as corollaries:

Theorem 3.26. The welfare of the pay-your-bid greedy combinatorial auction is a
√
m e

e−1
-

approximation to that of any other mechanism.

Theorem 3.27. With monopoly reserves and regular bidders, the revenue of the pay-

your-bid greedy combinatorial auction is a (
√
m+ 1) e

e−1
-approximation to that of any other

mechanism.
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3.5.3. Position Auctions

In first-price position auctions (a.k.a., the generalized first-price auction, GFP), arguments

similar to those in the matroid case yield analogous welfare and revenue guarantees.

Formally, a position auction is an auction in which agents can be allocated one of m

positions; each of which is valued by an agent at αjvi. In advertising auctions, these are

slots on a web-page to fill where lower slots receive fewer clicks. The positions are ordered

such that {αj} is decreasing in j (hence slot 1 is best).

In GFP, agents submit bids bi, and positions are allocated in order of bid. Each agent

pays their bid scaled by the quality of the slot: αjbi. Equivalently, they pay their bid when

they are served, which occurs with probability αj for position j.

While the correspondence between bids and threshold bids is not as immediate in GFP

as in the single-item, first-price auction, GFP satisfies a version of revenue covering where

the threshold up to the alternate allocation probability, Ti(x
′
i) =

∫ x′i
0
τ(z) dz is used in place

of the expected threshold scaled down by x′i, which is sufficient for welfare and revenue

approximations. The proof is included in Appendix A.4.1.

Theorem 3.28. The generalized first price (GFP) auction is 1-revenue covered.

3.5.4. Discretized Bids

Often in practice the bid space in an auction is discretized for convenience or feasibility. We

note here that discretizing the bidspace of a pay-your-bid auction only results in an additive

loss of the discretization amount.
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x̃i(d)
1

Bid (d)vi

ũi(bi)

Ti

x̃i(bi)

bi

Bid Allocation Rule

δ

Figure 3.5. When bids are only allowed in multiples of δ, the expected thresh-
old expands, but only by at most an additive amount of δ.

Consider a first-price auction where bids are only allowed in increments of δ. The expected

threshold appears larger to the agent with the restriction of bids to discretized amounts than

without the restriction. See Figure 3.5 for an illustration.

Consider a pay-your-bid mechanism M that is µ-revenue covered. Now, let Mδ be the

discretized version of that mechanism that only allows bids in increments of δ. For any

strategy profile in Mδ, the same strategy profile in M induces a threshold T that we know

is covered by µ copies of the revenue. Consider the expected threshold in Mδ:

T δ =

∫ 1

0

τ δ(z)dz ≤
∫ 1

0

τ(z) + δdz ≤ T + δ. (3.13)

Thus the expected threshold will only be larger by an additive δ, and all of the approxi-

mations we have discussed will hold except for that additive δ. If δ is small compared with

revenue, this makes effectively no difference: if δ is very large relative to revenue, it could

make a large difference.
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3.6. Beyond Pay-Your-Bid Auctions

We show that by reducing the problem of bidding in an auction to bidding in a first-price

auction, the same value-covering analysis that holds for the first-price auction holds for any

other auctions as well. This reduction allows us to derive price-of-anarchy results for welfare

and revenue in the all-pay auction (Section 3.6.1) and for the simultaneous composition of

revenue-covered auctions (Section 3.6.3).

Utility-maximizing agents in any auction must balance two goals: winning the auction

and not paying too much to win. In a pay-your-bid auction this relationship is explicit: your

bid is exactly your payment if you win, giving an expected utility of u(bi) = (vi − bi)x̃i(bi).

For other auctions, this relationship is less clear, but the behavior of agents is still the same:

they balance the probability they win with the expected cost of winning, with a utility that

we can write for any action as

ui(ai) = x̃i(ai)vi − pi(ai) =

(
vi −

pi(ai)

x̃i(ai)

)
x̃i(ai). (3.14)

The term pi(ai)
xi(ai)

plays exactly the same role as the bid in a pay-your-bid auction: it is

the price per unit of allocation. We call this the equivalent bid of an action; we denote it

βi(ai) = pi(ai)
x̃i(ai)

. We can now define expected thresholds, revenue and value covering using

equivalent bids to play exactly the role of first-price bids.

Equivalent Threshold Bids. The pivotal quantity in our pay-your-bid proof framework is the

expected threshold bid. First-price auctions have a natural monotonicity property: any bid

b is the minimum payment necessary to get the allocation probability x̃i(b). For auctions

with different payment semantics, we partition actions in agents’ choice sets by interim

allocation probability, then for each probability consider only the cheapest such action.
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For each allocation probability z, let αi(z) be that cheapest action and let the equivalent

threshold bid τi(z) = βi(αi(z)) be the equivalent bid of the cheapest action. Formally,

τi(z) = minai:x̃i(ai)≥z βi(ai), with αi(z) the arg min. Note that τi(z) depends on s as it is

taken in expectation over the actions of the other agents; for notational convenience, we

suppress the strategy profile as an argument. Define the expected (equivalent) threshold as

Ti =
∫ 1

0
τi(z) dz. This quantity will function identically to its counterpart in pay-your-bid

auctions, as a representation of how expensive it is for an agent to get allocation.

Covering Conditions and the Price of Anarchy. The use of equivalent bids reduces the op-

timization problem of a bidder in a general auction to the optimization problem a bidder in

a first-price auction faces. As a result, the value covering property of the first-price auction

that relates the agents utility and expected threshold still holds:

Lemma 3.29 (Value Covering). Consider a mechanism M in BNE with induced alloca-

tion and payment rules (x,p), and an agent i with value vi. Then

ui(vi) + Ti ≥ e−1
e
vi. (3.15)

The proof (included in Appendix A.2) can now be done by reduction to the single-item

first-price auction (Lemma 3.4) because the optimization problem is the same in each.

Recall that for the first-price auction, revenue and value covering combined to give ap-

proximation results for welfare. The same holds for value covering and µ-revenue covering

from Definition 3.1 of general mechanisms.

Theorem 3.30. If a mechanism is µ-revenue covered, then in any BNE it is a µ e
e−1

approximation to the welfare of the optimal mechanism.
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Proof. The proof proceeds analogously to the proof of Theorem 3.3.

For any agent i with value vi, value covering (Lemma 3.29) and µ-revenue covering

(Definition 3.1) combine to give

ui(vi) + µRev(M) ≥ e−1
e
vi.

Let x∗(v) be the welfare-optimal allocation. For any agent, x∗i ≤ 1, hence

ui(vi) + x∗i (vi)µRev(M) ≥ x∗i (vi)ui(vi) + x∗i (vi)µRev(M) ≥ x∗i (vi)
e− 1

e
vi. (3.16)

Summing over all agents and taking expectation over values gives Util(M)+µRev(M) ≥
e−1
e
Welfare(Opt). As Util(M) + Rev(M) = Welfare(M) and µ ≥ 1, we then have

our desired result,

µ
e

e− 1
Welfare(M) ≥Welfare(Opt). �

3.6.1. All-Pay Auctions

Auctions in which you must pay whether or not you win (all-pay auctions) can also be

revenue covered. To attain the equivalent bid corresponding to an all-pay bid, divide by

the allocation probability: βi(bi) = bi/x̃i(bi). The revenue in the all-pay auction is always

greater than the expected all-pay bid threshold; and the all-pay threshold is always at least

half of the equivalent bid threshold, which gives revenue covering with µ = 2.

Lemma 3.31. The all-pay matroid auction is 2-revenue covered.

We include the proof here for the single-item case; the generalization to matroids is

included in Appendix A.4.
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Proof (single-item). We first translate revenue to threshold bids. In expectation,

these thresholds 2-approximate the equivalent threshold bids. Combining the two arguments

yields the result.

Let s be an arbitrary strategy profile and x′ an alternate allocation. First, for any bidder

i, let τ bi (v−i) be the threshold (all-pay) bid for i in realized value profile v−i under s. Since

the threshold bid corresponds to some other agent’s bid, and agents pay their bids regardless

of allocation, Rev(M) ≥ Ev−i [τ
b
i (v−i)].

To relate threshold bids to equivalent thresholds, let ai(z) be the z-quantile of i’s com-

peting bids. That is, ai(z) = arg minai p̃i(ai) subject to x̃i(ai) ≥ z. By the definition of

τi,

p̃i(ai(z))

x̃i(ai(z))
≥ τi(z).

Rearranging and noting that in an all-pay auction, p̃i(ai(z)) = ai(z), we obtain

ai(z) ≥ τi(z)x̃i(ai(z)) ≥ τi(z)z. (3.17)

This yields the following sequence of inequalities:

Ev−i

[
τ bi (v−i)

]
=

∫ 1

0

ai(z) dz ≥
∫ 1

0

τi(z)z dz ≥ 1

2

∫ 1

0

τi(z) dz = Ti, (3.18)

where the first equality follows from noting that expected value can be computed by inte-

grating over quantiles, the first inequality from equation (3.17), and the second inequality

from the fact that τi is an increasing function and Chebyshev’s sum inequality. Finally, since

x′ is feasible,
∑

i x
′
i ≤ 1. We can combine this with (3.18) to get

2Rev(M) ≥
∑

i
Tix
′
i, (3.19)
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which is the definition of 2-revenue covering. �

Combining revenue covering with Theorem 3.30 gives a welfare bound of 2e/(e− 1). For

revenue, using the techniques of Section 3.4.3 and ensuring that at least two bidders have

values drawn from each distribution gives a 4e/(e− 1)-approximation to the revenue of the

optimal auction1.

The bounds can be improved to 2 and 6 respectively by adapting the value-covering

condition to the all-pay environment, shown in Appendix A.4.

3.6.2. The Second-Price Auction

Not all mechanisms are revenue covered. In the second-price auction, agents submit sealed

bids, the highest bidder wins and is charged the second-highest bid. This auction lacks a

direct connection between bidders’ threshold bids and the revenue of the auction, which is

required for revenue covering. To illustrate, consider a two-agent setting, and assume agents

1 bids 1 and agent 2 bids ε, deterministically. The revenue is ε, but T2 is 1, so the second-price

auction cannot be revenue covered.

If agents are assumed to never bid above their values, then “welfare-covering” can be

used in place of revenue-covering to give approximation bounds. This results in proofs that

are structurally very similar to those that assume no-overbidding in Syrgkanis and Tardos

[2013]; Caragiannis et al. [2015].

1Reserve prices do not work as conveniently in all-pay auctions as they do in first-price auctions, as a reserve
price r may eliminate the allocation of agents with values greater than r if they do not attain enough
allocation by outbidding the reserve.
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3.6.3. Simultaneous Composition

In this section, we prove that µ-revenue covering is closed under simultaneous composition.

Consequentially, welfare bounds proved for individual mechanisms via revenue covering ex-

tend to collections of such mechanisms run simultaneously. Moreover, we show that revenue

covering with the generalized notion of reserves in Section 3.6 is similarly closed under

composition. As a corollary, we extend our revenue bound for first-price auctions to the

simultaneous composition of such auctions.

Formally, the simultaneous composition of m mechanisms for single-dimensional agents

is the following:

Definition 3.2. Let mechanismsM1, . . . ,Mm have allocation and payment rules (xj,pj)

and individual action spaces spaces A1
i , . . . , A

m
i for each agent i. The simultaneous composi-

tion of M1, . . . ,Mm is defined to have:

• Action space ×jAji for each agent. That is, each agent participates in the global

mechanism by participating in each composed mechanism individually.

• Allocation rule x̂i(a) = [x̃1
i (a

1), . . . , x̃mi (am)] . In other words, the mechanism gives

each agent their allocated bundle from each mechanism.

• Payment rule p̃i(a) =
∑

j p̃
j
i (a

j). That is, agents make payments to every composed

mechanism.

We assume agent utilities are unit demand and single-valued over the outcomes of the

mechanisms. Agent utilities are therefore of the form vi ·(maxj∈Si x̃
j
i (a))−p̃i(a). The induced

single-dimensional allocation rule of the global mechanism is x̃i(a) = maxj∈Si x̃
j
i (a). Using

x̃, define τi, xi(y), and T yi as discussed in Section 3.6.

We can now state the main theorem of the section.
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Theorem 3.32. Let M be the simultaneous composition of mechanisms M1, . . .Mm

with unit-demand, single-valued agents. If M1, . . .Mm are µ-revenue covered with reserves

r then M is µ-revenue covered with reserves r.

The special case with reserves r = 0 yields the following corollary:

Corollary 3.33. Let M be the simultaneous composition of µ-revenue covered mecha-

nisms M1, . . .Mm with unit-demand, single-valued agents; then M is µ-revenue covered.

The intuition driving the proof of Theorem 3.32 is that getting allocated with probability

z in any individual mechanism will always be more costly than getting allocated with that

same probability when given all m mechanisms to choose from and bid in. It follows that each

agent’s expected threshold for the global mechanism is smaller than that for each individual

mechanism. Since payments for the global mechanism are just the sum of the individual

mechanisms’ payments, local revenue covering implies revenue covering for the composed

mechanism.

Each agent’s strategy in the global mechanism specifies a strategy for each individual

mechanism. Therefore, for each individual mechanism j, any global strategy profile s induces

a local strategy profile sj. The profile sj in mechanism j induces local versions of the

equivalent bid βji , threshold τ ji , reserve allocation xji (y), and expected threshold T
y(j)
i .

We can now formalize the above intuition that individual expected thresholds are larger

than the expected thresholds in the global mechanism:

Lemma 3.34. For any strategy profile s and allocation level y, T yi ≤ T
y(j)
i .
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Proof. Fix an individual mechanism j. By definition, T yi =
∫ 1

xi(y)
τi(z) dz, and T

y(j)
i =∫ 1

xji (y)
τ ji (z) dz. We will show that τi(z) ≤ τ ji (z) and xi(y) ≥ xji (y). These two facts together

imply the lemma.

First, the threshold for the global mechanism is defined as τi(z) = minai:x̃i(ai)≥z βi(ai),

and for the local mechanism as τ ji (z) = minaji :x̃
j
i (a

j
i )≥z

βji (a
j
i ). For every action aji in the local

mechanism, there is a corresponding action ai in the global mechanism where i takes action

aji in mechanism j and withdraws from every other mechanism. Since βi(ai) = βji (a
j
i ), it

follows that τi(z) ≤ τ ji (z).

Next, the global reserve allocation is xi(y) = maxai:βi(ai)≤y x̃i(ai), and the local reserve

allocation is xji (y) = maxaji :β
j
i (aji )≤y

x̃ji (a
j
i ). Again, for every aji in the local mechanism, there

is an action ai where i plays aji in j and withdraws everywhere else. Since βi(ai) = βji (a
j
i ),

it follows that xi(y) ≥ xji (y). �

Proof of Theorem 3.32. Every feasible allocation x′ in the global mechanism is a

matching between agents and items. Define x′i,j = x′i if i and j are matched, and 0 otherwise.

The theorem now follows from the following sequence of inequalities:

µRev(M) =
∑

j
Rev(Mj)

≥ µ
∑

j

∑
i
T
y(j)
i x′i,j

≥ µ
∑

i

∑
j
T
y(j)
i x′i,j

≥ µ
∑

i
T yi x

′
i
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The first equality follows from the definition of simultaneous composition. The second follows

revenue covering of mechanism j and the fact that x′·,j is feasible for j by downward closure.

The final inequality follows from Lemma 3.34 and the fact that
∑

j x
′
i,j = x′i. �

One corollary of Theorem 3.32 is that the simultaneous composition of any number of

first-price auctions with the same reserves is 1-revenue covered with those reserves. Using

monopoly reserves in a regular environment yields a revenue bound:

Corollary 3.35. Let M be the simultaneous composition of m first-price auctions with

monopoly reserves r∗, and unit-demand, single-valued agents with regular value distributions.

The revenue of M is a 2e
e−1
−approximation to the revenue of the optimal global mechanism.

3.7. Conclusion

We have shown a framework for proving price of anarchy results for welfare and revenue in

Bayes-Nash Equilibrium. This framework enabled us to prove both welfare and new revenue

approximation results for non-truthful auctions in asymmetric settings, including first price

and all-pay auctions.

We split this framework in two distinct parts that isolates the analysis of Bayes-Nash

Equilibrium from the analysis of the specific mechanism. The first part, value covering,

depends only on Bayes-Nash Equilibrium and relates an agents surplus and expected price

for additional allocation with her optimal surplus. The second, revenue-covering, depends

only on properties of a mechanism over individually rational strategy profiles and feasible

allocations. This is especially helpful when equilibria are hard to characterize or understand

analytically, as is the case with the first-price auction in asymmetric settings. We expect this

framework will aid broadly in understanding properties of equilibria in auctions well beyond

the confines of symmetric settings.
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We invoked the characterization of Bayes-Nash Equilibrium in a few very specific places

in our proofs. For value covering and virtual value covering, it is only important that an agent

be best responding to the expected actions of other bidders. For the revenue approximation

results, we do rely on the characterization of equilibrium by Myerson [1981] to account for

revenue via virtual values. This is the crucial part that allows us to relate the allocation

a bidder receives to their contribution to revenue. Extensions beyond single-parameter,

risk-neutral, private-valued agents will be challenging without a virtual-value equivalent.
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CHAPTER 4

Empirical Price of Anarchy Bounds

This chapter brings data into Price of Anarchy analysis with the Empirical Price of

Anarchy : the worst case Price of Anarchy of a setting and equilibrium that could have

produced a distribution of data. An approach for estimating empirical price of anarchy

bounds is presented, based on a near direct refinement of the theoretical framework in

Chapter 3 for empirical purposes: estimating the revenue covering bound in place of proving

it.
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Analysis of welfare in auctions comes traditionally via one of two approaches: precise but

fragile inference of the exact details of a setting using data or robust but coarse theoretical

price of anarchy bounds that hold in any setting.

In this chapter, we provide tools for analyzing and estimating the empirical price of

anarchy of an auction. The empirical price of anarchy is the worst case efficiency loss of any

auction instance that could have produced the data, relative to the optimal.

Our techniques are based on inferring simple properties of auctions from bid data: pri-

marily the expected revenue and the expected payments and allocation probabilities from

possible bids. These quantities alone allow us to empirically bound the revenue covering

parameter of an auction which allows us to re-purpose the theoretical machinery from Chap-

ter 3 for empirical means. While we focus on the setting of position auctions, and particularly

the generalized second price auction, our techniques are applicable far more generally.

Finally, we apply our techniques to a selection of advertising auctions on Microsoft’s Bing

which are not theoretically revenue covered, and find empirical results that are a significant

improvement over the theoretical worst-case bounds.

4.1. Introduction

Evaluation of the revenue and welfare of market mechanisms is a key question in Eco-

nomics. A typical question of interest is the comparison of a currently deployed mechanism

with the best solution implemented by a central planner, taking into account the incentives

of participating Economic agents. The price of anarchy, first introduced by Koutsoupias and

Papadimitriou [1999] for network routing games, provides a worst-case bound on the ratio

of the revenue or welfare from the optimal mechanism compared to the currently deployed

mechanism.
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The worst-case nature of the price of anarchy results in very robust bounds, but this

robustness can come at the cost of bounds that are too coarse for an analyst interested in

understanding the performance of a currently deployed mechanism. In some types of games

this is not a problem because performance can be empirically estimated: processing time or

memory usage can be measured; route choice and delay in a network can be tracked, and

compared to another benchmark.

However, in auctions and other settings where agents have private information that im-

pacts the objectives of a system, estimating the performance has traditionally required learn-

ing that private information. Oftentimes the results from this style of analysis are also very

sensitive to the exact decision making of bidders, and for instance are not robust to bidders

who choose only the approximately best action, or play learning strategies.

In this chapter, we bridge the robust but coarse theoretical price of anarchy bounds and

precise but fragile inference based bounds, by integrating data directly into the price of

anarchy style analysis. Instead of quantifying over all settings and uncertainties, we take the

worst case over all settings and uncertainties that could induce the observed data. The more

we know about the data generated by a mechanism, the higher the potential for an accurate

bound.

Our approach benefits from the inherent robustness of worst-case analysis to realistic

market features such as differences in details of mechanisms or agents who only approximately

best-respond. At the same time, our approach uses the data and effectively informs the price

of anarchy bound regarding the “worst case scenario” distributions of uncertainty that are

clearly inconsistent with the observed data. That allows us to improve the welfare and

revenue bounds given by the theoretical price of anarchy.
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4.1.1. Methods

Theoretical. Our theoretical technique for proving empirical price of anarchy bounds is an

empirical application of the revenue-covering framework from Chapter 3, targeted to position

auctions. First, we analyze the optimization problem of a bidder, comparing actions in the

auction based on their expected price-per-click (which is the first-price equivalent bid from

Chapter 3).

Second, we relate the revenue of an auction to a threshold quantity, which is based

on how expensive allocation is. We call this empirical revenue covering, and differs from

theoretical revenue covering of Chapter 3 only in that we measure it for a given instance of

an auction instead of proving it for every possible strategy profile. As a result, our empirical

revenue covering framework applies even more broadly that theoretical revenue covering: it

can be measured for any Bayes-Nash Equilibrium of any single-parameter auction in the

independent, private values model.

Finally, we consider and measure how agents would react to the optimization problem

that they are faced with. We measure the value-covering of the auction, which improves

on the 1 − 1
e

term shown in Chapter 3. This can be done both with precise knowledge

of price-per-click allocation rule, or with rough knowledge of concentration bounds on the

price-per-click allocation rule.

Our general approach can also be seen as reducing the empirical analysis of an auction

to the econometric question of estimating the revenue of an auction and estimating the

allocations and prices-per-click of actions in the auction. Notably, this avoids the need to

estimate empirical first order conditions required for traditional econometric analysis.
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Robustness. Our results inherit a robustness to changes in the mechanism or the setting

by leveraging the theoretical framework of Chapter 3.

• Beyond Position Auctions. The analysis in this chapter is focused on position

auctions, but the analysis is general and can be applied for Bayes-Nash Equilibria

in other setting or mechanism. It is only required that allocation probabilities and

expected payments can be estimated.

• Changes in the Mechanism. As the thresholds we calculate are based on the

price-per-click allocation rule of a bidder, threshold quantities can be compared

and computed no matter what the mechanism is as long as these quantities can be

estimated.

• Approximate Equilibrium. If the agents in an auction only ε-best respond to

the optimization problem that they are faced with, then our efficiency results only

degrade by that ε.

Moreover, if some agents are irrational and some are rational, then our results

can be broken out to give efficiency results for individual rational bidders: each

bidder’s contribution to the optimal welfare is approximated by a combination of

their own utility and revenue of the seller if they best respond. Notably, this requires

no comparison of utilities between bidders in the auction or assumptions on why

the other bidders are playing actions.

• Learning Quality Scores. We model the quality score of a bidder as coming from

a known distribution. This distribution should be interpreted as the auctioneers

knowledge of the quality score of the bidder. Our efficiency results give a comparison

to the optimal auction for the same knowledge of quality scores of the bidders. This
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distribution moreover can have arbitrary correlations, as it only really affects the

space of feasible allocations.

4.1.2. Contributions

Our primary contributions are the following:

• Empirical Price of Anarchy. We introduce the empirical Price of Anarchy(EPoA)

benchmark for welfare, representing the worst case efficiency loss of a game consis-

tent with a distribution of data from the game.

• Empirical Revenue Covering. We refine the revenue-covering framework of Hart-

line et al. [2014] for proving robust EPoA bounds, and show that we can empirically

estimate the empirical revenue covering of the Generalized Second Price auction.

• Data. We apply and bound the empirical price of anarchy from GSP advertising

auctions run in Microsoft’s Bing, and show that we get EPoA bounds that are

significantly stronger than the relevant theoretical bounds.

4.1.3. Related Work

The efficiency of the Generalized Second-Price auction (GSP) was originally modeled and

studied in full-information settings in Edelman et al. [2007] and Varian [2009]. Gomes and

Sweeney [2014] characterize equilibrium in the Bayesian setting, and give conditions on

the existence of efficient equilibria. Athey and Nekipelov [2010] give a structural model of

GSP with varying quality scores, which are included in our model. Caragiannis et al. [2015]

explores the efficiency of GSP in the Bayesian setting, and finds a theoretical price of anarchy

for welfare of 2.927 when the value distributions are independent or correlated, and agents

do not overbid. Our results apply for independent distributions of values, but do not need



92

the no-overbidding assumption, and generalizes to the more realistic case that the ranking

of the bidders is not exactly equal to the quality score of a bidder. Hence, in principle we

could observe higher inefficiency in the data than the theoretical bound above. Despite this

fact we find in the data that only better inefficiency bounds are derived, with the exception

of one search phrase where we almost exactly match the latter worst-case theoretical bound.

The semi-smoothness based approach of Caragiannis et al. [2015] can be seen through our

model as using a welfare covering property in place of revenue covering.

4.2. Preliminaries

We consider the position auction setting, with m positions and n bidders. Each bidder

i has a private value vi drawn independently from distribution Fi over the space of possible

values Vi. We denote the joint value-space and distribution over values V = Πi Vi and

F = Πi Fi respectively. Bidders have a linear utility, so if they pay pi to receive a probability

of service xi, the utility of the bidder is ui = vixi − pi.

An outcome o in a position auction is an allocation of positions to bidders. o(j) denotes

the bidder who is allocated position j; o−1(i) refers to the position assigned to bidder i.

Henceforth we will adopt the terminology of ad auctions and refer to service as a ‘click’.

When bidder i is assigned to slot j, the probability of click ci,j is the product of the

click-through-rate of the slot αj and the quality score of the bidder, γi, so ci,j = αjγi. We

will generally assume that γi is drawn independently from distribution Γi, and is observable

to the auctioneer, but not to the bidder themselves.

Since the auctioneer can use the quality scores in assigning bidders to slots and the

quality scores impact the number of clicks that each agent sees, an allocation x is feasible if
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and only if there is a quality-score dependent assignment of slots to bidders that gives rise

to this allocation.

Denote by ρ(γ, ·) such an assignment, where ρ(γ, j) is the agent who is assigned position j

when the quality score profile is γ and ρ−1(γ, i) is the position assigned to agent i. Moreover,

denote byM the space of all such quality score dependent assignments. Then an allocation

x is feasible if there exists ρ ∈ M such that for each bidder i: xi = Eγ[αρ−1(γ,i)γi]. Call X

the set of all feasible allocations.

A position auction A consists of a bid space B, allocation rule x̃ : Bn → X mapping from

bid profiles to feasible allocations and payment allocation rule p̃ : Bn → Rn mapping from

bid profiles to payments. A strategy profile s : V → Bn maps values of agents to bids. For

a set of values v, the utility generated for each bidder is Ui(b; vi) = vix̃(b)− p̃i(b).

Given a strategy profile s, we will often use the expected allocation and payment an

agent expects to receive when playing an bid bi, taking expectation over other agents values

and the quality score γi. We call x̃i(bi) = Ev−i [x̃i(bi, s−i(v−i))] the interim bid allocation

rule. We define p̃i(bi) and ũi(bi) analogously.

A strategy profile s is in Bayes-Nash Equilibrium (BNE) if for all agents i, si(vi) maxi-

mizes their interim expected utility: e.g., for all bids d, ũi(si(vi)) ≥ ũi(d).

The welfare from an allocation x is the expected utility generated for both the bidders

and the auctioneer,
∑

i xivi. Thus the expected utility of a strategy profile s is

Welfare(A(s)) = Ev

[∑
i

vixi(si(vi))

]
(4.1)
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We will break down the welfare of the auction into the revenue paid to the auction-

eer, Rev(A(s)) = Ev[
∑

i p̃i(si(v))] and the utility derived from the agents, Util(A(s)) =

Ev[
∑

i ũi(s(v))], with

Welfare(A(s)) = Rev(A(s)) + Util(A(s)).

Our benchmark for welfare will be the welfare of the auction that chooses a feasible

allocation to maximize the welfare generated, thus Welfare(Opt) = Ev[maxx

∑
i xivi] =

Ev,γγγ[maxo
∑

i γiαo−1(i)vi]. We will denote the resulting optimal value-based allocation rule

x∗.

4.2.1. Sponsored Search Auction: model and data

We consider data generated by advertisers repeatedly participating in a sponsored search

auction. The mechanism that is being repeated at each stage is an instance of a generalized

second price auction triggered by a search query.

The rules of each auction are as follows: Each advertiser i is associated with a click

probability γi and a scoring coefficient sci and is asked to submit a bid-per-click bi. Advertisers

are ranked by their rank-score qi = sci · bi and allocated positions in decreasing order of rank-

score as long as they pass a rank-score reserve r. If advertisers also pass a higher mainline

reserve m, then they may be allocated in the positions that appear in the mainline part of

the page, but at most k advertisers are placed on the mainline.

If advertiser i is allocated position j, then he is clicked with some probability ci,j, which we

will assume to be separable into a part αj depending on the position and a part γi depending

on the advertiser, and that the position related effect is the same in all the participating
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auctions: ci,j = αj · γi. We denote with γγγ and ααα the vectors of quality scores and position

coefficients. All the mentioned sets of parameters θ = (sc,ααα,γγγ, r,m, k) and the bids b are

observable in the data. Moreover, the parameters and bids are known to the auctioneer at

the allocation time. We will denote with πb,θ(j) the bidder allocated in slot j under a bid

profile b and parameter profile θ. We denote with π−1
b,θ(i) the slot allocated to bidder i.

If advertiser i is allocated position j, then he pays only when he is clicked and his payment,

i.e. his cost-per-click (CPC) is the minimal bid he had to place to keep his position, which

is:

cpcij(b; θ) = max

{
scπb,θ(j+1) · bπb,θ(j+1)

sci
,
r

sci
,
m

sci
· 1{j ∈M}

}
(4.2)

where with M we denote the set of mainline positions.

We also assume that each advertiser has a value-per-click (VPC) vi, which is not observed

in the data. If under a bid profile b, advertiser i is allocated slot π−1
b,θ(i), his expected utility

is:

Ui(b; vi) = Eθ

[
απ−1

b,θ(i) · γi ·
(
vi − cpciπ−1

b,θ(i)(b; θ)
)]

(4.3)

4.2.2. Price of Anarchy

Definition 4.1. The (Bayesian) price-of-anarchy for welfare of an auction A is defined

as the worst-case ratio of welfare in the optimal auction to the welfare in an equilibrium,

taken over all settings, and all equilibrium strategies associated with the setting:

PoA(A) = max
F,s∈BNE(A,F)

Welfare(Opt(F))

Welfare(A(F, s))
(4.4)

We will also refer to the price of anarchy with a known restriction on the equilibrium or

settings available:
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Definition 4.2. The (Bayesian) price-of-anarchy for welfare of an auction and a set Z

of value distribution, equilibrium pairs is defined as the worst-case ratio of welfare in the

optimal auction to the welfare of an setting-equilibrium pair in Z :

PoA(A,Z ) = max
(F,s)∈Z

Welfare(Opt(F))

Welfare(A(F, s))
(4.5)

4.3. Price of Anarchy from Data

We begin by defining the empirical price-of-anarchy of an auction, which differs from

theoretical price of anarchy in that we assume knowledge of the data generated by the

auction, not knowledge about the setting or equilibrium. We use the notationD(A,F, s) = D

to denote that D is the distribution of data produced by running the mechanism A with

value distributions F and strategies s.

Definition 4.3 (Empirical Price of Anarchy). The Bayesian empirical price-of-anarchy

for welfare of an auction and a distribution of data D is the Price of Anarchy of the auction

restricted to settings and equilibria that could generate D , e.g.,

EPoA(A,D) = PoA
(
A, {(F, s)}D(A,F,s)=D∧s∈BNE(A,F)

)
. (4.6)

In the case that an equilibrium and setting can be point-identified from the data dis-

tribution D , the set {(F, s)}D(A,F,s)=D∧s∈BNE(A,F) has only one element, the point-identified

setting and equilibrium.

The distribution of data D from an equilibrium of an auction is still a theoretical quantity.

We will primarily be proving empirical price of anarchy bounds for all distributions that

satisfy properties that are easy to infer. For instance, while we will not do this in this
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chapter, one could prove price of anarchy bounds whenever the average second highest bid

is at least a constant fraction of the first highest bid.

4.3.1. Empirical Revenue Covering Framework for Position Auctions

In this section, we refine the revenue covering framework from Chapter 3 for empirical

bounds.

Notably, we use a pointwise version of revenue-covering that applies for a given strategy

profile and auction rather than taking the worst-case revenue covering over all strategy

profiles.

The property of µ-revenue covering is based only on the relationship between the expected

revenue of an auction, and a property of the optimization problem that the bidders are solving

(the expected threshold).

Both of these quantities are observable in the data, and hence by observing that an

instance of an auction is µ-revenue covered, we will get empirical price of anarchy bounds

that apply for the auction we are observing.

The rest of this section will proceed in three parts:

(1) Generate PPC Allocation rules: Analyze how to bid in the auction.

(2) Measure µ: Analyze the correspondence between thresholds and revenue in the

auction.

(3) Measure λ: Calculate the worst-case tradeoff between utility and thresholds in the

auction.

Generate PPC Allocation Rules. We first focus on the optimization problem each bidder

faces. When bidding in an auction, each bidder must think about for each possible bid, how
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1

Price-per-click (PPC)

PPC Allocation Rule
x̃i(ppc) = τ−1

i (ppc)

E
[#

C
li
ck

s]

vi

ũi(b)

ppc(b)

Figure 4.1. For any bid b with PPC ppc(b), the area of a rectangle between
(ppc(b), x̃i(ppc(b))) and (vi, 0) on the bid allocation rule is the expected utility
ũi(b). The BNE action b∗ is chosen to maximize this area.

many clicks she will receive and how much she will have to pay on average for each click. In

particular, the utility of an agent can be written to only include these terms:

ũi(b) = vix̃i(b)− p̃i(b)

= x̃i(b)

(
vi −

p̃i(b)

x̃i(b)

)
(4.7)

The price-per-click term p̃i(b)
x̃i(b)

term now plays exactly the same role in the utility function

that the first-price bid does in the first price auction. We call this term ppc(b) = p̃i(b)
x̃i(b)

the

price-per-click of the bid in a position auction. Outside of position auctions, it is called the

(first-price) equivalent bid in Chapter 3, because it plays the same role as a first-price bid

does in a first-price style auction.

Our analysis will be based on the price-per-click allocation rule x̃(ppc), which plots the

expected number of clicks of bids against their prices-per-click. See Figure 4.2b for an

illustration of the PPC allocation rule.
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1

Price-per-click (PPC)

PPC Allocation Rule

x̃i(ppc) = τ−1
i (ppc)

E
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(a) The price-per-click
allocation rule in full-
information GSP.

1

Price-per-click (PPC)

PPC Allocation Rule

x̃i(ppc) = τ−1
i (ppc)

E
[#

C
li

ck
s]

(b) The price-per-click al-
location rule in Bayesian
GSP.

Figure 4.2. In GSP, the price-per-click curve will be piecewise constant in full-
information settings, and smoother in Bayesian settings. In Bayesian settings
a bid might result in winning a number of possible slots, and so the expected
number of clicks comes from all possible slots.

The utility of a bidder is ũi(b) = x̃i(b) (vi − ppc(b)), which has a clean visualization on a

plot of the PPC allocation rule: is the area of a rectangle between the points (ppc, x̃i(ppc))

and (vi, 0). See Figure 4.1 for an illustration.

Thresholds & Revenue Covering. We will most often use the inverse of the PPC allocation

rule for our analysis; let τi(z) = x̃−1
i (z) be the price-per-click of the cheapest bid that achieves

allocation at least z. More formally, τi(z) = minb|x̃i(b)≥z{ppc(b)}.

The threshold for agent i and expected probability of click x′i is

Ti(x
′
i) =

∫ x′i

0

τi(z) dz (4.8)

See Figure 4.3b for an illustration of Ti(x
′
i) on the plot of the price-per-click allocation rule.
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(a) The expected thresh-
old in full-information
GSP.

1

Ti(x
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x′i
x̃(ppc)

Price-per-click (PPC)
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(b) The expected thresh-
old in Bayesian GSP.

Figure 4.3. The expected threshold for each bidder and allocation x′i is the
area above the price-per-click allocation rule, up to x′i. Note that in Bayesian
GSP, the expected thresholds for bidder i in slot j is not the expectation of
the full-information threshold.

The total threshold for the allocation x′ is then the sum of the expected thresholds across

all agents,
∑

i Ti(x
′
i).

1 We now refine the notion of revenue-covering from Chapter 3 to apply

for a specific strategy profile.

Definition 4.4 (Revenue Covering). Auction A with action distribution F a is µ-revenue

covered if for any feasible allocation x′,

µRev(A(F a)) ≥
∑
i

Ti(x
′
i). (4.9)

If we can prove that for any action distribution, the auction and strategy profile are

revenue covered, the auction is theoretically µ-revenue covered in the sense of Definition 3.

We will say a strategy profile and setting are revenue covered for an auction if the action

distribution resulting from agents playing in the auction according to the strategy profile is

1Note that while this is different than the general definition of expected thresholds in Hartline et al. [2014],
it is the same as the definition of thresholds for the generalized-first-price position auction in Hartline et al.
[2014]. It is also related to the threshold notion in Syrgkanis and Tardos [2013], which uses τ(x′) as the
threshold quantity rather than T (x′) =

∫ z
0
τ(z) dz.
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revenue covered. We will also use s(F) to refer to the distribution of actions resulting from

agents playing from s when their values are drawn from F.

Value Covering & PoA Results.

Lemma 4.1 (Value Covering). For any bidder i with value vi and allocation amount x′i,

ui(vi) +
1

µ
Ti(x

′
i) ≥

1− e−µ

µ
x′ivi. (4.10)

The proof is included in the appendix for completeness: it is a refinement of the proof

of value covering from Chapter 3, matching the bound in Syrgkanis and Tardos [2013] for

c-threshold approximate auctions.

Combining revenue covering of an action distribution and value covering gives a welfare

approximation result for the strategy profile and setting that produces that action distribu-

tion:

Theorem 4.2. The welfare in any µ-revenue covered strategy profile s and setting of

auction A is at least a µ
1−e−µ -approximation to the optimal welfare.

Proof. Let x∗(v) be the welfare optimal allocation for valuation profile v. Recall that

the optimal allocation is also allowed to use the instantiation of the quality scores and

is taken in expectation over the quality scores. Applying the value covering inequality of

Equation (4.10) with respect to allocation quantity x∗i (v) gives that for each bidder i with

value vi,

ui(vi) +
1

µ
Ti(x

∗
i (v)) ≥ 1− e−µ

µ
x∗i (v)vi. (4.11)

The quantity x∗i (v)vi is exactly agent i’s expected contribution to the welfare of the

optimal auction. Applying the revenue covering inequality (4.9) for x′ = x∗(v) and taking
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Figure 4.4. The price of anarchy of an auction which is µ-revenue covered,
either theoretically or empirically, is µ

1−e−µ .

expectation over v yields:

µ ·Rev(A(s))) ≥ Ev

[∑
i

Ti(x
∗
i (v))

]
. (4.12)

By Equations (4.11) and (4.12) we obtain:

Util(A(s)) + Rev(A(s)) ≥ Ev

[∑
i

ui(vi)

]
+ Ev

[∑
i

1

µ
Ti(x

∗
i (v))

]

=
∑
i

Ev

[
ui(vi) +

1

µ
Ti(x

∗
i (v))

]

≥
∑
i

Ev

[
1− e−µ

µ
x∗i (v)vi

]
=

1− e−µ

µ
Welfare(Opt)

Since Welfare(A(s)) = Rev(A(s)) + Util(A(s)), we have our desired result,

Welfare(A(s)) ≥ 1− e−µ

µ
Welfare(Opt).

�

See Figure 4.4 for a plot of the price of anarchy as a function of µ.



103

4.3.2. Refining with Observational Data

We now discuss the calculation of µ from the distribution of data D generated by an auction.

The revenue of an auction is observable in D . If we can also upper bound
∑

i Ti(x
′
i) for any

feasible allocation x′, then we have an upper bound on µ. Define T to be this upperbound,

hence T = maxx

∑
i Ti(xi).

Recall that as the auction gets to know the quality scores before deciding the allocation

of positions, any feasible allocation corresponds to a quality score dependent assignment of

slots to bidders.

If the quality scores γ were deterministic, then we could write

T = max
x

∑
i

Ti(xi) = max
ρ

∑
i

Ti(Eγ

[
γiαρ−1(γγγ,i)

]
) = max

o

∑
i

Ti(γiαo−1(i)). (4.13)

The latter optimization problem would simply be a bipartite weighted matching problem,

where the weight of bidder i for position j would be Ti(γiαo−1(i)). However, when the quality

scores are random and their distribution has support of size K, then the space of feasible

assignments M has size (nm)K and the problem does not have the structure of a matching

problem anymore, since the functions Ti(·) are arbitrary convex functions. Solving this

complicated maximization problem seems hopeless. In fact it can be shown that the latter

problem is NP-hard by a reduction from the maximum hypergraph matching problem, when

the size of the support of the correlated distribution of γγγ is not constant. The hardness arises

even if each γi is either 0 or 1.

However, for the purpose of providing an upper bound on the empirical price of anarchy,

it suffices to compute an upper bound on T and then show that this upper bound is revenue

covered. We will use the convexity of functions Ti(·) to provide such an upper bound.
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Specifically, let

xi = max
x

xi = max
ρ∈M

Eγ

[
aρ−1(γ,i)γi

]
= α1 Eγ [γi]

denote the maximum possible allocation of bidder i. Then observe that by convexity for any

feasible xi: Ti(xi) ≤ xi
Ti(xi)
xi

. Thus we will define:

T1
= max

x

∑
i

xi
Ti(xi)

xi
(4.14)

Then we immediately get the following observation:

Observation 4.1. T1 ≥ T.

Computing T1
is a much easier computational problem than computing T. Specifically,

by linearity of expectation:

T1
= max

x

∑
i

xi
Ti(xi)

xi
= max

ρ∈M

∑
i

Eγγγ

[
αρ−1(γ,i)γi

] Ti(xi)
xi

= max
ρ∈M

Eγγγ

[∑
i

αρ−1(γ,i)γi ·
Ti(xi)

xi

]

= Eγγγ

[
max
π∈Π

∑
i

απ−1(i)γi ·
Ti(xi)

xi

]

Now observe that the problem inside the expectation is equivalent to a welfare maximization

problem where each agent i has a value-per-click of v′i = Ti(xi)
xi

and we want to maximize

the welfare:
∑

i απ−1(i)γi · v′i. The optimal such allocation is simply the greedy allocation

which assigns slots to bidders in decreasing order of γi · v′i. Thus computing T1
consists of

running a greedy allocation algorithm for each quality score profile γ in the support of the
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distribution of quality scores, which would take time K · (m + n log(n)). When applying

it to the data, we will simply compute the optimal greedy allocation for each instance of

the quality scores that arrives in each auction (i.e. we compute the latter for the empirical

distribution of quality score profiles).

Empirical Revenue Covering. If we can estimate the threshold upper-bound and the revenue,

then this is now enough for a revenue-covering result for the strategy profile being played in

the auction:

Lemma 4.3. For any auction A with action distribution F a, revenue Rev(A) and thresh-

old upper bound T, A is T
Rev(A)

-revenue covered with action distribution F a.

Combining this with Theorem 4.2 directly gives a welfare approximation result:

Corollary 4.4. For any instance of an auction, with action distribution F a and (ob-

servable) revenue Rev(A) and threshold upper bound T, the empirical price of anarchy for

auction A is at most

T
Rev(A)

1

1− e−T/Rev(A)
. (4.15)

Empirical Value Covering. We can also use data to improve the 1
1−e−µ factor in the approx-

imation bound. This term comes from value covering (Lemma 4.1), which analyzes how

bidders react to the price-per-click allocation rules they face. In the proof of value covering,

it is shown that no matter what the price-per-click allocation rule is, it is always the case

that ũi + 1
µ
Ti(x

′
i) ≥ 1−e−µ

µ
x′ivi. When we can observe the price-per-click allocation rules, we

can simply take the worst case over the price-per-click allocation rules that we observe for

each agent, giving an improved price of anarchy result.
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Definition 4.5 (Empirical Value Covering). Auction A and action distribution F a are

empirically λ-value covered if A is µ-revenue covered, and for any bidder i with value vi and

allocation amount x′i,

ui(vi) +
1

µ
Ti(x

′
i) ≥

λ

µ
x′ivi. (4.16)

Lemma 4.5. If auction A and action distribution F a are empirically µ-revenue covered

and λ-value covered, then the empirical price of anarchy is at most µ
λ

.

Proof. The proof is analogous to the proof of Theorem 4.2, using the value covering

parameter λ in place of the general value covering result, Lemma 4.1. �

One approach is to directly look at the threshold curves, and find the worst case ratio of

threshold and utility to value over all possible values.

Lemma 4.6. For a µ-revenue covered auction A and action distribution F a, let λµi =

minvi,x′i
µui(vi)+Ti(x

′
i)

x′ivi
and λµ = mini λ

µ
i .

Then A and F a are empirically λµ-value covered.

In the case that an auction is shown to be µ-revenue covered with respect to the upper

bound T1
, the maximization can be simplified to only consider the allocation amount xi,

hence λµi = minvi
µũi+Ti(xi)

vi
.

Concentration Bounds. We can also improve on the value covering term even if we only know

some properties about the concentration of the price-per-click allocation rule. If the price-

per-click allocation rule is highly concentrated, and the minimum feasible price per click is

at least a (1 − 1
k
) fraction of the maximum feasible price per click, we can get significantly

improved bounds.
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µ k = 1 k = 2 k = 4 k = 10 k = 100
0.5 1.271 1. 1. 1. 1.
0.75 1.421 1.116 1. 1. 1.

1 1.582 1.302 1.163 1.072 1.009
1.25 1.752 1.506 1.382 1.304 1.256
1.5 1.931 1.717 1.61 1.545 1.505
2 2.313 2.157 2.079 2.032 2.003
4 4.075 4.037 4.019 4.007 4.001
8 8.003 8.001 8.001 8. 8.

Table 4.1. Price of Anarchy bounds when the price-per-click of getting any
allocation is at least a (1 − 1

k
) fraction of the price-per-click of getting the

maximum allocation, with empirical revenue covering parameter µ.

Lemma 4.7. For any µ-revenue covered auction A and action distribution F a with µ ≥ 1,

if τ(ε) ≥ (1 − 1/k)τ(x′i) for any feasible allocation amount x′i and ε > 0, A and s are

empirically (1− 1/k)-value covered.

The proof is included in the appendix: see Table 4.1 for better numerical results.

4.4. Data Analysis

We run our analysis on the BingAds auctions. We analyzed eleven phrases from multiple

thematic categories. For each phrase we retrieved data of auctions for the phrase for the

period of a week. For each phrase and bidder that participated in the auctions for the phrase

we computed the allocation curve and by simulating the auctions for the week and computing

what would have happened at each auction for each possible bid an advertiser could submit.

We discretized the bid space and assumed a hard upper bound on the bid amount.

The left graph in Figure 4.5 shows the allocation curves for a subset of the advertisers

for a specific search phrase, the right shows the resulting threshold curves. Most of these

keywords have a huge amount of heterogeneity across advertisers as can be seen by the very

different bid levels of each advertiser and the very different quality score. For instance, in



108

Figure 4.6 we depict the average bid, average quality score and average payment of each of

the same subset of advertisers for which we depicted the allocation and threshold function

in Figure 4.5.

Figure 4.5. Examples of allocation curves (left) and threshold curves (right)
for a subset of six advertisers for a specific keyword during the period of a week.
All axes are normalized to 1 for privacy reasons. The circles in the left plot
correspond to the expected allocation and expected threshold if bidder i was
given the j-th slot in all the auctions, i.e. the circle corresponding to the high-
est allocation and threshold corresponds to the point (α1 E[γi], T (α1 E[γi])),
the next circle corresponds to (α2 E[γi], T (α2 E[γi])), etc.

Figure 4.6. Average bid E[bi], average quality factor E[γi] and average revenue
contribution E[pi], correspondingly, for the same subset of six advertisers that
participated in a specific keyword during the period of a week. Vertical axes
are normalized to 1 for privacy reasons.
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Subsequently, we applied all the techniques we describe in Section 4.3 for each of the

search phrases. We first computed the optimal upper bound on the thresholds T1
and by

observing the revenue of the auctions from the data, we can compute an upper bound on

the revenue covering of the auction for the phrase, i.e. µ1 = T1
/Rev. Then for this µ1 we

optimized over λ by using the allocation curves and Lemma 4.6 and assuming some hard

upper bound on the valuation of each advertiser and found the optimal such λ, denoted by

λ1. Then an upper bound on the empirical price of anarchy is µ1/λ1.

Subsequently we tested the tightness of our analysis by computing the value of the true

thresholds on the optimal allocation that was computed under the linear approximations of

the thresholds. This is a feasible allocation and hence the true value of T is at least the

value of the thresholds for this allocation. Hence, by looking at the value of the thresholds

at this allocation, denoted by LB−T we can check how good our approximation of T is T1
.

Then we also computed the optimal thresholds for any quality score independent allocation

rule. Apart from yielding yet another lower bound for T, the latter analysis also yields an

empirical price of anarchy with respect to such a handicapped optimal welfare, which can

also be used as a welfare benchmark.

We portray our results on these quantities for each of the eleven search phrases in Table

4.2.
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1
EPoA1

T1

Rev
λ1 LB−T

Rev
1

LB−EPoA
1

FA−EPoA
phrase1 .567 1.4164 .803 .562 .788 .783
phrase2 .606 1.2848 .779 .553 .792 .784
phrase3 .279 4.182 1.167 3.364 .325 .320
phrase4 .284 3.860 1.098 2.298 .401 .507
phrase5 .673 1.099 .740 .437 .828 .829
phrase6 .628 1.183 .743 .495 .832 .791
phrase7 .672 1.031 .693 .503 .824 .802
phrase8 .645 1.036 .669 .520 .795 .817
phrase9 .622 1.169 .726 .581 .759 .809
phrase10 .597 1.138 .680 .545 .771 .833
phrase11 .573 1.431 .820 .631 .780 .786

Table 4.2. Empirical Price of Anarchy analysis for a set of eleven search phrases
on the BingAds system. Phrases are grouped together according to the the-
matic category of the search phrase. The columns have the following interpre-
tation: 1) EPoA1 is the upper bound on the empirical price of anarchy, i.e.
if 1/EPoA1 is x it means that the welfare of the auction is at least x · 100%
efficient. This lower bound is computed by using the polynomially computable

upper bound T1
of T and then also optimizing over λ. 2) µ1 = T1

/Rev is the
ratio of the upper bound on the maximum sum of thresholds over the revenue
of the auction. 3) λ1 is the minimum lambda across advertisers after running
the optimization problem presented in Lemma 4.6 for the allocation curve of
each advertiser, assuming some upper bound on the value. Then based on
Lemma 4.5, EPoA1 = λ1/µ1. 4) LB − T/Rev: we use the optimal allocation

computed by assuming the linear form of thresholds used for T1
. Then we

evaluate the true thresholds on this allocation. This is a feasible allocation
and hence the value of the thresholds on this allocation, denoted LB − T is a
lower bound on the value of T. Thus this ratio is a lower bound on how well
the auction is revenue covered. 5) LB − EPoA, this is simply the empirical
price of anarchy bound that would have been implied if T = LB − T and
even if we optimized over λ. Thus 1

LB−EPoA is an upper bound on how good
our efficiency bound could have been even if we solved the hard problem of
computing T. 6) T, this corresponds to the optimal thresholds with respect
to any quality score independent feasible allocation as defined in Section 4.3.
7) FA − EPoA a bound on the empirical price of anarchy with respect to a
quality score independent allocation rule. For this price of anarchy we did not
optimize over λ, hence FA− EPoA = µ

1−exp(−µ)
.
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CHAPTER 5

Risk-Averse Bidders

In this chapter, we study simple and approximately optimal auctions for agents with two

forms of risk-averse preferences. For capacitated agents, we show that the revenue from the

first-price auction is approximately optimal. For CARA agents, we show the revenue from

the first-price auction is approximately optimal compared to the first-price auction with a

reserve price. Both results rely on adapting aspects of Myerson’s [1981] characterization of

revenue in risk-neutral settings to risk-averse settings.
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5.1. Introduction

We study optimal and approximately optimal auctions for agents with risk-averse pref-

erences. The economics literature on this subject is largely focused on either comparative

statics, i.e., is the first-price or second-price auction better when agents are risk averse, or

deriving the optimal auction, e.g., using techniques from optimal control, for specific distribu-

tions of agent preferences. The former says nothing about optimality but considers realistic

prior-independent auctions; the latter says nothing about realistic and prior-independent

auctions. Our goal is to study approximately optimal auctions for risk-averse agents that

are realistic and not dependent on assumptions on the specific form of the distribution of

agent preferences. One of our main conclusions is that, while the second-price auction can be

very far from optimal for risk-averse agents, the first-price auction is approximately optimal

for an interesting class of risk-averse preferences.

The microeconomic treatment of risk aversion in auction theory suggests that the form

of the optimal auction is very dependent on precise modeling details of the preferences of

agents, see, e.g., Maskin and Riley [1984] and Matthews [1984]. The resulting auctions are

unrealistic because of their reliance on the prior assumption and because they are complex [cf.

Wilson, 1987]. Approximation can address both issues. There may be a class of mechanisms

that is simple, natural, and much less dependent on exact properties of the distribution. As

an example of this agenda for risk neutral agents, Hartline and Roughgarden [2009] showed

that for a large class of distributional assumptions the second-price auction with a reserve

is a constant approximation to the optimal single-item auction. This implies that the only

information about the distribution of preferences that is necessary for a good approximation

is a single number, i.e., a good reserve price. Often from this sort of “simple versus optimal”
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result it is possible to do away with the reserve price entirely. Dhangwatnotai et al. [2010]

and Roughgarden et al. [2012] show that simple and natural mechanisms are approximately

optimal quite broadly. We extend this agenda to auction theory for risk-averse agents.

The least controversial approach for modeling risk-averse agent preferences is to assume

agents are endowed with a concave function that maps their wealth to a utility. This intro-

duces a non-linearity into the incentive constraints of the agents which in most cases makes

auction design analytically intractable.

In this work, we focus on two forms of utility functions: capacitated, and constant absolute

risk aversion (CARA) utility functions.

In a capacitated utility function, the utility is risk-neutral until the agent hits her capacity,

then flat. Importantly, an agent with such a utility function will not trade off a higher

probability of winning for a lower price when the utility from such a lower price is greater

than her capacity. While capacitated utility functions are unrealistic, they form a basis for

general concave utility functions. In our analyses we will endow the benchmark optimal

auction with knowledge of the agents’ value distribution and capacity; however, some of the

mechanisms we design to approximate this benchmark will be oblivious to them.

We will also attain results comparing the first-price auction to the first-price auction

with the optimal reserve price for agents with Constant Absolute Risk Aversion (CARA)

preferences. In CARA utility functions, agents’ risk attitudes do not change with shifts in

wealth. If an agent prefers a constant $4 to a 50% $0, 50% $10 lottery, she will also prefer a

constant $1004 to 50% $1000, 50% $1010 lottery.

As an illustrative example, consider the problem of maximizing welfare by a single-item

auction when agents have known capacitated utility functions (but unknown values). Recall

that for risk-neutral agents the second-price auction is welfare-optimal as the payments are
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Utility

Wealth (w)C

Figure 5.1. The capacitated utility function, UC(w) = min(w,C).

transfers from the agents to the mechanism and cancel from the objective welfare which

is thus equal to value of the winner. (The auctioneer is assumed to have linear utility.)

For agents with capacitated utility, the second-price auction can be far from optimal. For

instance, when the difference between the highest and second highest bid is much larger than

the capacity then the excess value (beyond the capacity) that is received by the winner does

not translate to extra utility because it is truncated at the capacity. Instead, a variant of

the second-price auction, where the highest bidder wins and is charged the maximum of the

second highest bid and her bid less her capacity, obtains the optimal welfare. Unfortunately,

this auction is parameterized by the form of the utility function of the agents. There is,

however, an auction, not dependent on specific knowledge of the utility functions or prior

distribution, that is also welfare optimal: If the agents values are drawn i.i.d. from a common

prior distribution then the first-price auction is welfare-optimal. To see this: (a) standard

analyses show that at equilibrium the highest-valued agent wins, and (b) no agent will shade

her bid more than her capacity as she receives no increased utility from such a lower payment

but her probability of winning strictly decreases.
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Our main goal is to duplicate the above observation for the objective of revenue. It

is easy to see that the gap between the optimal revenues for risk-neutral and capacitated

agents can be of the same order as the gap between the optimal welfare and the optimal

revenue (which can be unbounded). When the capacities are small the revenue of the welfare-

optimal auction for capacitated utilities is close to its welfare (the winners utility is at most

her capacity). When capacities are infinite or very large then the risk-neutral optimal revenue

is close to the capacitated optimal revenue (the capacities are not binding). One of our main

technical results shows that even for mid-range capacities one of these two mechanisms that

are optimal at the extremes is close to optimal.

As a first step towards understanding profit maximization for capacitated agents, we

characterize the optimal auction for agents with capacitated utility functions. We then

give a “simple versus optimal” result showing that either the revenue-optimal auction for

risk-neutral agents or the above welfare-optimal auction for capacitated agents is a good ap-

proximation to the revenue-optimal auction for capacitated agents. In symmetric settings,

the Bulow-Klemperer [1996] Theorem implies that with enough competition (and mild dis-

tributional assumptions) welfare-optimal auctions are approximately revenue-optimal. The

first-price auction is welfare-optimal and prior-independent; therefore we conclude that it is

approximately revenue-optimal for capacitated agents in symmetric settings, and leveraging

the approach of Chapter 3, approximately optimal in asymmetric settings.

Our “simple versus optimal” result (which holds for both symmetric and asymmetric

settings) comes from an upper bound on the expected payment of an agent in terms of

her allocation rule [cf. Myerson, 1981]. This upper bound is the most technical result in the

paper; the difficulties that must be overcome by our analysis are exemplified by the following

observations. First, unlike in risk-neutral mechanism design, Bayes-Nash equilibrium does
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not imply monotonicity of allocation rules. There are mechanisms where an agent with a

high value would prefer less overall probability of service than she would have obtained if

she had a lower value (Example 5.1 in Section 5.3). Second, even in the case where the

capacity is higher than the maximum possible value of any agent, the optimal mechanism

for risk-averse agents can generally obtain more revenue than the optimal mechanism for

risk-neutral agents (Example 5.3 in Section 5.4). This may be surprising because, in such a

case, the revenue-optimal mechanism for risk-neutral agents would give any agent a wealth

that is within the linear part of her utility function. Finally, while our upper bound on risk-

averse payments implies that this relative improvement is bounded by a factor of two for

large capacities, it can be arbitrarily large for small capacities (Example 5.2 in Section 5.4).

It is natural to conjecture that the first-price auction will continue to perform nearly

optimally well beyond capacitated and CARA preferences. It is a relatively straightforward

calculation to see that for a large class of risk-averse utility functions from the literature [e.g.,

Matthews, 1984] the first-price auction is approximately optimal at extremal risk parameters

(risk-neutral or extremely risk-averse). We leave to future work the extension of our analysis

to mid-range risk parameters for these other families of risk-averse utility functions.

It is significant and deliberate that our main theorem is about the first-price auction

which is well known to not have a truthtelling equilibrium. Our goal is a prior-independent

mechanism. In particular, we would like our mechanism to be parameterized neither by the

distribution on agent preference nor by the capacity that governs the agents utility function.

While it is standard in mechanism design and analysis to invoke the revelation principle

[cf. Myerson, 1981] and restrict attention to auctions with truthtelling as equilibrium, this

principle cannot be applied in prior-independent auction design. An auction with good

equilibrium can be implemented by one with truthtelling as an equilibrium if the agent
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strategies can be simulated by the auction. In a Bayesian environment, agent strategies are

parameterized by the prior distribution and therefore the suggested revelation mechanism is

not generally prior independent.

Risk Aversion, Universal Truthfulness, and Truthfulness in Expectation. Our results have an

important implication on a prevailing and questionable perspective that is explicit and im-

plicit broadly in the field of algorithmic mechanism design. Two standard solution concepts

from algorithmic mechanism design are “universal truthfulness” and “truthfulness in expec-

tation.” A mechanism is universally truthful if an agent’s optimal (and dominant) strategy

is to reveal her values for the various outcomes of the mechanism regardless of the reports

of other agents or random coins flipped by the mechanism. In contrast, in a truthful-in-

expectation mechanism, revealing truthfully her values only maximizes the agent’s utility in

expectation over the random coins tossed by the mechanism. Therefore, a risk-averse agent

modeled by a non-linear utility function may not bid truthfully in a truthful-in-expectation

mechanism designed for risk-neutral agents, whereas in a universally truthful mechanism an

agent behaves the same regardless of her risk attitude. For this reason, the above-mentioned

perspective sees universally truthful mechanisms superior because the performance guaran-

tees shown for risk-neutral agents seem to apply to risk-averse agents as well.

This perspective is incorrect because the optimal performance possible by a mechanism

is different for risk-neutral and risk-averse agents. In some cases, a mechanism may exploit

the risk attitude of the agents to achieve objectives better than the optimal possible for risk-

neutral agents; in other cases, the objective itself relies on the utility functions (e.g. social

welfare maximization), and therefore the same outcome has a different objective value. In all

these situations, the performance guarantee of universally truthful mechanisms measured by

the risk-neutral optimality loses its meaning. We have already discussed above two examples
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for capacitated agents that illustrate this point: for welfare maximization the second-price

auction is not optimal, for revenue maximization the risk-neutral revenue-optimal auction

can be far from optimal.

The conclusion of the discussion above is that the universally truthful mechanisms from

the literature are not generally good when agents are risk averse; therefore, the solution

concept of universal truthfulness buys no additional guarantees over truthfulness in expec-

tation. Nonetheless, our results suggest that it may be possible to develop a general theory

for prior-independent mechanisms for risk-averse agents. By necessity, though, this theory

will look different from the existing theory of algorithmic mechanism design.

Summary of Results. Our main theorem is that the first-price auction is a prior-independent

5-approximation for revenue for two or more agents with i.i.d. values and risk-averse prefer-

ences (given by a common capacity). The technical results that enable this theorem are as

follows:

• The optimal auction for agents with capacitated utilities is a two-priced mechanism

where a winning agent either pays her full value or her value less her capacity.

• The expected revenue of an agent with capacitated utility and regular value distri-

bution can be bounded in terms of an expected (risk-averse) virtual surplus, where

the (risk-averse) virtual value is twice the risk-neutral virtual value plus the value

minus capacity (if positive).

• Either the mechanism that optimizes value minus capacity (and charges the Clarke

payments or value minus capacity, whichever is higher) or the risk-neutral revenue

optimal mechanism is a 3-approximation to the revenue optimal auction for capac-

itated utilities.



119

• We characterize the Bayes-Nash equilibria of auctions with capacitated agents where

each bidder’s payment when served is a deterministic function of her value. An ex-

ample of this is the first-price auction. The BNE strategies of the capacitated agents

can be calculated formulaically from the BNE strategies of risk-neutral agents.

Some of these results extend beyond single-item auctions. In particular, the characteri-

zation of equilibrium in the first-price auction holds for position auction environments (i.e.,

where agents are assigned to positions greedily by bid with decreasing probabilities of ser-

vice and charged their bid if served). If valuations are symmetric in a position auction, then

our prior-independent 5-approximation (Theorem 5.15) holds. Our simple-versus-optimal

3-approximation (Theorem 5.17) holds generally for downward-closed environments, non-

identical distributions, and non-identical capacities.

For CARA agents in symmetric settings that satisfy a regularity condition, the revenue of

the first-price auction is an n−1
n

approximation to the revenue of the first-price auction with

the optimal reserve. Note that this exactly matches the risk-neutral bound from Theorem 2.9.

Related Work. The comparative performance of first- and second-price auctions in the pres-

ence of risk aversion has been well studied in the Economics literature. From a revenue

perspective, first-price auctions are shown to outperform second-price auctions very broadly.

Riley and Samuelson [1981] and Holt [1980] show this for symmetric settings where bidders

have the same concave utility function. Maskin and Riley [1984] show this for more general

preferences.

Matthews [1987] shows that in addition to the revenue dominance, bidders whose risk

attitudes exhibit constant absolute risk aversion (CARA) are indifferent between first- and

second-price auctions, even though they pay more in expectation in the first-price auction.

Hu et al. [2010] considers the optimal reserve prices to set in each, and shows that the optimal
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reserve in the first price auction is less than that in the second price auction. Interestingly,

under light conditions on the utility functions, as risk aversion increases, the optimal first-

price reserve price decreases.

Matthews [1983] and Maskin and Riley [1984] have considered optimal mechanisms for a

single item, with symmetric bidders (i.i.d. values and identical utility function), for CARA

and more general preferences. Both approaches apply only when the optimal auction involves

a deterministic price upon winning, which is not satisfied in our setting.

Dughmi and Peres [2012] have shown that by insuring bidders against uncertainty, any

truthful-in-expectation mechanism for risk-neutral agents can be converted into a dominant-

strategy incentive compatible mechanism for risk-averse buyers with no loss of revenue.

However, there is potentially much to gain—mechanisms for risk-averse buyers can achieve

unboundedly more welfare and revenue than mechanisms for risk-neutral bidders, as we show

in Example 5.2 of Section 5.4.

5.2. Preliminaries

Risk-Averse Agents. Consider selling an item to an agent who has a private valuation v

drawn from a known distribution F . Denote the outcome by (x, p), where x ∈ {0, 1} indicates

whether the agent gets the item, and p is the payment made. The agent obtains a wealth

of vx − p for such an outcome and the agent’s utility is given by a concave utility function

U(·) that maps her wealth to utility, i.e., her utility for outcome (x, p) is U(vx−p). Concave

utility functions are a standard approach for modeling risk-aversion.1

A capacitated utility function is UC(z) = min(z, C) for a given C which we refer to as the

capacity. Intuitively, small C relative to value corresponds to severe risk aversion; large C

1There are other definitions of risk aversion; this one is the least controversial. See Mas-Colell et al. [1995]
for a thorough exposition of expected utility theory.
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corresponds to mild risk aversion; and C =∞ corresponds to risk neutrality. An agent views

an auction as a deterministic rule that maps a random source and the (possibly random)

reports of other agents which we summarize by π, and the report b of the agent, to an

allocation and payment. We denote these coupled allocation and payment rules as xπ(b)

and pπ(b), respectively. The agent wishes to maximize her expected utility which is given by

Eπ[UC(vxπ(b)− pπ(b))], i.e., she is a von Neumann-Morgenstern utility maximizer.

Incentives. A strategy profile of agents is s = (s1, . . . , sn) mapping values to reports. Such

a strategy profile is in Bayes-Nash equilibrium (BNE) if each agent i maximizes her utility

by reporting si(vi). I.e., for all i, vi, and z:

Eπ [U(vix
π
i (si(vi))− pπi (si(vi)))] ≥ Eπ [U(vix

π
i (z)− pπi (z))]

where π denotes the random bits accessed by the mechanism as well as the random inputs

sj(vj) for j 6= i and vj ∼ Fj. A mechanism is Bayesian incentive compatible (BIC) if

truthtelling is a Bayes-Nash equilibrium: for all i, vi, and z

Eπ [U(vix
π
i (vi)− pπi (vi))] ≥ Eπ [U(vix

π
i (z)− pπi (z))] (IC)

where π denotes the random bits accessed by the mechanism as well as the random inputs

vj ∼ Fj for j 6= i.

We will consider only mechanisms where losers have no payments, and winners pay at

most their bids. These constraints imply ex post individual rationality (IR). Formulaically,

for all i, vi, and π, pπi (vi) ≤ vi when xπi (vi) = 1 and pπi (vi) = 0 when xπi (vi) = 0.

Auctions and Objectives. The revenue of an auction M is the total payment of all agents;

its expected revenue for implicit distribution F and Bayes-Nash equilibrium is denoted
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Rev(M) = Eπ,v[
∑

i p
π
i (vi)]. The welfare of an auction M is the total utility of all partici-

pants including the auctioneer; its expected welfare is denoted Welfare(M) = Rev(M)+

Eπ,v[
∑

i U(vix
π
i (vi)− pπi (vi))].

Some examples of auctions are: the first-price auction (FPA) serves the agent with the

highest bid and charges her her bid; the second-price auction (SPA) serves the agent with

the highest bid and charges her the second-highest bid. The second price auction is incentive

compatible regardless of agents’ risk attitudes. The capacitated second-price auction (CSP)

serves the agent with the highest bid and charges her the maximum of her value less her

capacity and the second highest bid. The second-price auction for capacitated agents is

incentive compatible for capacitated agents because, relative to the second-price auction,

the utility an agent receives for truthtelling is unaffected and the utility she receives for any

misreport is only (weakly) lower.

Two-Priced Auctions. The following class of auctions will be relevant for agents with capac-

itated utility functions.

Definition 5.1. A mechanism M is two-priced if, whenever M serves an agent with

capacity C and value v, the agent’s payment is either v or v − C; and otherwise (when not

served) her payment is zero. Denote by xval(v) and xC(v) probability of paying v and v−C,

respectively.

Note that from an agent’s perspective the outcome of a two-priced mechanism is fully de-

scribed by a xC and xval.

Auction Theory for Risk-Neutral Agents. For risk-neutral agents, i.e., with U(·) equal to the

identity function, only the probability of winning and expected payment are relevant. The

interim allocation rule and interim payment rule are given by the expectation of xπ and pπ
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over π and denoted as x(b) = Eπ[xπ(b)] and p(b) = Eπ[pπ(b)], respectively (recall that π

encodes the randomization of the mechanism and the reports of other agents).

For risk-neutral agents, Myerson [1981] characterized interim allocation and payment

rules that arise in BNE and solved for the revenue optimal auction. These results are

summarized in the following theorem.

Theorem 5.1 (Myerson, 1981). For risk-neutral bidders with valuations drawn indepen-

dently and identically from F ,

(1) (monotonicity) The allocation rule x(v) for each agent is monotone non-decreasing

in v.

(2) (payment identity) The payment rule satisfies p(v) = vx(v)−
∫ v

0
x(z)dz.

(3) (virtual value) The ex ante expected payment of an agent is Ev[p(v)] = Ev[ϕ(v)x(v)]

where ϕ(v) = v − 1−F (v)
F (v)

is the virtual value for value v.

(4) (optimality) When the distribution F is regular, i.e., ϕ(v) is monotone, the second-

price auction with reserve ϕ−1(0) is revenue-optimal.

The payment identity in part 2 implies the revenue equivalence between any two auctions

with the same BNE allocation rule.

A well-known result by Bulow and Klemperer shows that, in part 4 of Theorem 5.1,

instead of having a reserve price to make the second-price auction optimal, one may as well

add in another identical bidder to get at least as much revenue.

Theorem 5.2 (Bulow and Klemperer, 1996). For risk-neutral bidders with valuations

drawn i.i.d. from a regular distribution, the revenue from the second-price auction with n+ 1

bidders is at least that of the optimal auction for n bidders.
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5.3. The Optimal Auctions

In this section we study the form of optimal mechanisms for capacitated agents. In

Section 5.3.1, we show that it is without loss of generality to consider two-priced auctions,

and in Section 5.3.2 we characterize the incentive constraints of two-priced auctions. In

Section 5.3.3 we use this characterization to show that the optimal auction (in discrete type

spaces) can be computed in polynomial time in the number of types.

5.3.1. Two-priced Auctions Are Optimal

Recall a two-priced auction is one where when any agent is served she is either charged

her value or her value minus her capacity. We show below that restricting our attention to

two-priced auctions is without loss for the objective of revenue.

Theorem 5.3. For any BIC auction with capacitated agents (with heterogeneous capac-

ities) there is a two-priced auction with no lower revenue.

Proof. We prove this theorem in two steps. In the first step we show, quite simply, that

if an agent with a particular value received more wealth than C then we can truncate her

wealth to C (by charging her more). With her given value she is indifferent to this change,

and for all other values this change makes misreporting this value (weakly) less desirable.

Therefore, such a change would not induce misreporting and only (weakly) increases revenue.

This first step gives a mechanism wherein every agent’s wealth is in the linear part of her

utility function. The second step is to show that we can transform the distribution of wealth

into a two point distribution. Whenever an agent with value v is offered a price that results

in a wealth w ∈ [0, C], we instead offer her a price of v−C with probability w/C, and a price

of v with the remaining probability. Both the expected revenue and the utility of a truthful
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bidder is unchanged. The expected utility of other types to misreport v, however, weakly

decreases by the concavity of UC , because mixing over endpoints of an interval on a concave

function gives less value than mixing over internal points with the same expectation. �

5.3.2. Characterization of Two-Priced Auctions

In this section we characterize the incentive constraints of two-priced auctions. We focus

on the induced two-priced mechanism for a single agent given the randomization π of other

agent values and the mechanism. The interim two-priced allocation rule of this agent is

denoted by x(v) = xval(v) + xC(v).

Lemma 5.4. A mechanism with two-price allocation rule x = xval + xC is BIC if and

only if for all v and v+ such that v < v+ ≤ v + C,

xval(v)

C
≤ xC(v+)− xC(v)

v+ − v
≤ x(v+)

C
. (5.1)

Equation (5.1) can be equivalently written as the following two linear constraints on xC ,

for all v− ≤ v ≤ v+ ∈ [v − C, v + C]:

xC(v+) ≥ xC(v) +
v+ − v
C

· xval(v), (5.2)

xC(v−) ≥ xC(v)− v − v−

C
· x(v). (5.3)

Equations (5.2) and (5.3) are illustrated in Figure 5.2. For a fixed v, (5.2) with v+ = v + C

yields a lower bounding line segment from (v, xC(v)) to (v + C, xC(v) + xval(v)), and (5.3)

with v− = v−C gives a lower bounding line segment from (v, xC(v)) to (v−C, xC(v)−x(v)).

Note that (5.2) implies that xC is monotone.
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In the special case when xC is differentiable, by taking v+ approaching v in (5.1), we have

xval(v)
C
≤ x′C(v) ≤ x(v)

C
for all v. In general, we have the following condition in the integral

form (see Section D.1 for a proof).

Corollary 5.5. The allocation rule x = xval +xC of a BIC two-priced mechanism for all

v < v+ satisfies:

∫ v+

v

xval(z)

C
dz ≤ xC(v+)− xC(v) ≤

∫ v+

v

x(z)

C
dz. (5.4)

Value

x(v)

xC(v)

v′ − C v′ v′ + C
•

•

•

Figure 5.2. Fixing x(v′) = xval(v
′) + xC(v′), the dashed line between points

(v′ − C, xC(v′) − x(v′)), (v′, xC(v′)), and (v′ + C, xC(v′) + xval(v
′)) (denoted

by “•”) depicts the lower bounds from (5.2) and (5.3) on xC for values in
[v′ − C, v′ + C].

Importantly, the equilibrium characterization of two-priced mechanisms does not imply

monotonicity of the allocation rule x. This is in contrast with mechanisms for risk-neutral

agents, where incentive compatibility requires a monotone allocation rule (Theorem 5.1,

part 1). This non-monotonicity is exhibited in the following example.

Example 5.1. There is a single-agent two-priced mechanism with a non-monotone al-

location rule. Our agent has two possible values v = 3 and v = 4, and capacity C of 2. We

give a two price mechanism. Recall that xC(v) is the probability with which the mechanism
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sells the item and charges v − C; xval(v) is the probability with which the mechanism sells

the item and charges v; and x(v) = xC(v) + xval(v). The mechanism and its outcome are

summarized in the following table.

v x xC xval

utility from
truthful reporting

utility from
misreporting

3 5/6 1/2 1/3 1 2/3

4 2/3 2/3 0 4/3 4/3

5.3.3. Optimal Auction Computation

Solving for the optimal mechanism is computationally tractable for any discrete (explicitly

given) type space D. Given a discrete valuation distribution on support D, one can use 2 |D|

variables to represent the allocation rule of any two-priced mechanism, and the expected

revenue is a linear sum of these variables. Lemma 5.4 shows that one can use O(|D|2) linear

constraints to express all BIC allocations, and hence the revenue optimization for a single

bidder can be solved by a O(|D|2)-sized linear program. Furthermore, using techniques

developed by Cai et al. [2012] and Alaei et al. [2012], in particular the “token-passing”

characterization of single-item auctions by Alaei et al. [2012], we obtain:

Theorem 5.6. For n bidders with independent valuations with type spaces D1, · · · , Dn

and capacities C1, · · · , Cn, one can solve for the optimal single-item auction with a linear

program of size O
(
(
∑

i |Di|)2
)
.

5.4. An Upper Bound on Two-Priced Expected Payment

In this section we will prove an upper bound on the expected payment from any capac-

itated agent in a two-priced mechanism. This upper bound is analogous in purpose to the

identity between expected risk-neutral payments and expected virtual surplus of Myerson
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[1981] from which optimal auctions for risk-neutral agents are derived. We use this bound

in Section 5.5.2 and Section 5.5.3 to derive approximately optimal mechanisms.

As before, we focus on the induced two-priced mechanism for a single agent given the

randomization π of other agent values and the mechanism. The expected payment of a bidder

of value v under allocation rule x(v) = xC(v) +xval(v) is p(v) = v ·xval(v) + (v−C) ·xC(v) =

v · x(v)− C · xC(v).

Recall from Theorem 5.1 that the (risk-neutral) virtual value for an agent with value

drawn from distribution F is ϕ(v) = v − 1−F (v)
F (v)

and that the expected risk-neutral payment

for allocation rule x(·) is Ev[ϕ(v)x(v)]. Denote max(0, ϕ(v)) by ϕ+(v) and max(v−C, 0) by

(v − C)+.

Theorem 5.7. For any agent with value v ∼ F , capacity C, and two-priced allocation

rule x(v) = xval(v) + xC(v),

Ev [p(v)] ≤Ev

[
ϕ+(v) · x(v)

]
+ Ev

[
ϕ+(v) · xC(v)

]
+ Ev

[
(v − C)+ · xC(v)

]
.

Corollary 5.8. When bidders have regular distributions and a common capacity, either

the risk-neutral optimal auction or the capacitated second price auction (whichever has higher

revenue) gives a 3-approximation to the optimal revenue for capacitated agents.

Proof. For each of the three parts of the revenue upper bound of Theorem 5.7, there is

a simple auction that optimizes the expectation of the part across all agents. For the first

two parts, the allocation rules across agents (both for x(·) and xC(·)) are feasible. When the

distributions of agent values are regular (i.e., the virtual value functions are monotone), the

risk-neutral revenue-optimal auction optimizes virtual surplus across all feasible allocations
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(i.e., expected virtual value of the agent served); therefore, its expected revenue upper bounds

the first and second parts of the bound in Theorem 5.7. The revenue of the third part is

again the expectation of a monotone function (in this case (v − C)+) times the service

probability. The auction that serves the agent with the highest (positive) “value minus

capacity” (and charges the winner the maximum of her “minimum winning bid,” i.e., the

second-price payment rule, and her “value minus capacity”) optimizes such an expression

over all feasible allocations; therefore, its revenue upper bounds this third part of the bound

in Theorem 5.7. When capacities are identical, this auction is the capacitated second price

auction. �

Before proving Theorem 5.7, we give two examples. The first shows that the gap between

the revenue of the capacitated second-price auction and the risk-neutral revenue-optimal

auction (i.e., the two auctions from Corollary 5.8) can be arbitrarily large. This means that

there is no hope that an auction for risk-neutral agents always obtains good revenue for

risk-averse agents. The second example shows that even when all values are bounded from

above by the capacity (and therefore, capacities are never binding in a risk-neutral auction)

an auction for risk-averse agents can still take advantage of risk aversion to generate higher

revenue. Consequently, the fact that we have two risk-neutral revenue terms in the bound

of Theorem 5.7 is necessary (as the “value minus capacity” term is zero in this case).

Example 5.2. Auctions with capacitated agents can achieve unboundedly more revenue

than with risk-neutral agents. The equal revenue distribution on interval [1, h] has distri-

bution function F (z) = 1 − 1/z (with a point mass at h). The distribution gets its name

because such an agent would accept any offer price of p with probability 1/p and generate

an expected revenue of one. With one such agent the optimal risk-neutral revenue is one.
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Of course, an agent with capacity C = 1 would happily pay her value minus her capacity to

win all the time (i.e., x(v) = xC(v) = 1). The revenue of this auction is E[v]− 1 = lnh. For

large h, this is unboundedly larger than the revenue we can obtain from a risk-neutral agent

with the same distribution.

Example 5.3. The revenue from a two-priced mechanism can be better than the optimal

risk-neutral revenue even when all values are no more than the capacity. Consider selling to

an agent with capacity of C = 1000 and value drawn from the equal revenue distribution

from Example Example 5.2 with h = 1000.

The following two-priced rule is BIC and generates revenue of approximately 1.55 when

selling to such a bidder. Let xC(v) = 0.6
1000

(v − 1), x(v) = min(xC(v) + 0.6, 1), and xval(v) =

x(v) − xC(v) (shown in Figure 5.3). Recall that the expected payment from an agent with

value v can be written as vx(v) − CxC(v); for small values, this will be approximately 0.6;

for large values this will increase to 400. The expected revenue is

∫ 1000

1

(z · x(z)− 1000 xC(z))F (z)dz +
1

1000
(1000 · xval(1000)) ≈ 1.55.

The optimal risk-neutral revenue is 1, giving our desired bound.

In the remainder of this section we instantiate the following outline for the proof of

Theorem 5.7. First, we transform any given two-priced allocation rule x = xval + xC into

a new two-priced rule x̄(v) = x̄C(v) + x̄val(v) (for which the expected payment is p̄(v) =

vx̄(v) − Cx̄C(v)). While this transformation may violate some incentive constraints (from

Lemma 5.4), it enforces convexity of x̄C(v) on v ∈ [0, C] and (weakly) improves revenue.

Second, we derive a simple upper bound on the payment rule p̄(·). Finally, we use the
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enforced convexity property of x̄C(·) and the revenue upper bound to partition the expected

payment Ev[p̄(v)] by the three terms that can each be attained by simple mechanisms.

5.4.1. Two-Priced Allocation Construction

We now construct a two-priced allocation rule x̄ = x̄val + x̄C from x = xval +xC for which (a)

revenue is improved, i.e., p̄(v) ≥ p(v), and (b) the probability the agent pays her value minus

capacity, x̄C(v), is convex for v ∈ [0, C]. In fact, given xval, x̄C is the smallest function for

which IC constraint (5.2) holds; and in the special case when xval is monotone, the left-hand

side of (5.4) is tight for x̄C on [0, C]. Other incentive constraints may be violated by x̄, but

we use it only as an upper bound for revenue.

Definition 5.2 (x̄). We define x̄ = x̄C + x̄val as follows:

(1) x̄val(v) = xval(v);

x(v)

xC(v)

C = 1000

1

Value

Figure 5.3. With C = 1000 and values drawn from the equal revenue distri-
bution on [1, 1000], this two-priced mechanism is BIC and achieves 1.55 times
the revenue of the optimal risk-neutral mechanism.
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(2) Let r(v) be 1
C

supz≤v xval(z), and let

x̄C(v) =


∫ v

0
r(y) dy, v ∈ [0, C];

xC(v), v > C.
(5.5)

Lemma 5.9 (Properties of x̄).

(1) On v ∈ [0, C], x̄C(·) is a convex, monotone increasing function.

(2) On all v, x̄C(v) ≤ xC(v).

(3) The incentive constraint from the left-hand side of (5.4) holds for x̄C:

1

C

∫ v+

v

x̄val(z) dz ≤ x̄C(v+)− x̄C(v) for all v < v+.

(4) On all v, x̄C(v) ≤ xC(v), x̄(v) ≤ x(v), and p̄(v) ≥ p(v).

The proof of part 2 is technical, and we give a sketch here. Recall that, for each v, the

IC constraint (5.2) gives a linear constraint lower bounding xC(v+) for every v+ > v. If one

decreases xC(v), the lower bound it imposes on xC(v+) is simply “pulled down” and is less

binding. The definition of x̄C simply lands x̄C(v) on the most binding lower bound, and

therefore not only makes x̄C(v) at most xC(v), but also lowers the linear constraint that v

imposes on larger values. If the number of values is countable or if xval is piecewise constant,

the lemma is easy to see by induction. A full proof for the general case of part 2, along with

the proofs of the other more direct parts of Lemma 5.9, is given in Section D.2.

5.4.2. Payment Upper Bound

Recall that p̄(v) is the expected payment corresponding with two-priced allocation rule x̄(v).

We now give an upper bound on p̄(v).
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Lemma 5.10. The payment p̄(v) for v and two-priced rule x̄(v) satisfies

p̄(v) ≤ vx̄(v)−
∫ v

0

x̄(z) dz +

∫ v

0

x̄C(z) dz. (5.6)

Proof. View a two-priced mechanism x̄ = x̄val + x̄C as charging v with probability x̄(v)

and giving a rebate of C with probability x̄C(v). We bound this rebate as follows (which

proves the lemma):

C · x̄C(v) ≥ C · x̄C(0) +

∫ v

0

x̄val(z) dz

≥
∫ v

0

x̄(z) dz −
∫ v

0

x̄C(z) dz.

The first inequality is from part 3 of Lemma 5.9. The second inequality is from the definition

of x̄C(0) = 0 in (5.5) and x̄val(v) = x̄(v)− x̄C(v). See Figure 5.4 for an illustration. �

Value

x̄

x̄C

v − C v

(a) The shaded region is the ex-
pected payment from an agent
of value v.

Value

x̄

x̄C

v − C v

(b) The shaded region
upper bounds expected
payment from an agent
with value v, shown in
Lemma 5.10.

Figure 5.4. Depictions and bounds on the payments in two-priced auctions.



134

5.4.3. Three-part Payment Decomposition

Below, we bound p̄(·) (and hence p(·)) in terms of the expected payment of three natural

mechanisms. As seen geometrically in Figure 5.5, the bound given in Lemma 5.10 can be

broken into two parts: the area above x̄(·), and the area below x̄C(·). We refer to the former

as p̄I(·); we further split the latter quantity into two parts: p̄II(·), the area corresponding to

v ∈ [0, C], and p̄III(·), that corresponding to v ∈ [C, v]. We define these quantities formally

below:

p̄I(v) = x̄(v)v −
∫ v

0

x̄(z) dz, (5.7)

p̄II(v) =

∫ min{v,C}

0

x̄C(z) dz (5.8)

p̄III(v) =


0, v ≤ C;∫ v
C
x̄C(z) dz, v > C.

(5.9)

Value

x̄

x̄C

vC

p̄I

p̄II p̄III

Figure 5.5. Breakdown of the expected payment upper bound in a two-priced
auction.
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Proof of Theorem 5.7. We now bound the revenue from each of the three parts

of the payment decomposition. These bounds, combined with part 4 of Lemma 5.9 and

Lemma 5.10, immediately give Theorem 5.7.

Part 1.: Ev[p̄
I(v)] = Ev[ϕ(v) · x̄(v)] ≤ Ev[ϕ

+(v) · x(v)].

Formulaically, p̄I(·) corresponds to the risk-neutral payment identity for x̄(·) as

specified by part 2 of Theorem 5.1; by part 3 of Theorem 5.1, in expectation over v,

this payment is equal to the expected virtual surplus Ev[ϕ(v) · x̄(v)].2 The inequality

follows as terms ϕ(v) and x̄(v) in this expectation are point-wise upper bounded by

ϕ+(v) = max(ϕ(v), 0) and x(v), respectively, the latter by part 4 of Lemma 5.9.

Part 2.: Ev[p̄
II(v)] ≤ Ev[ϕ(v) · x̄C(v)] ≤ Ev[ϕ

+(v) · xC(v)].

By definition of p̄II(·) in (5.8), if the statement holds for v = C it holds for v > C;

so we argue it only for v ∈ [0, C]. Formulaically, with respect to a risk-neutral agent

with allocation rule x̄C(·), the risk-neutral payment is v · x̄C(v) −
∫ v

0
x̄C(z) dz, the

surplus is v · x̄C(v), and the risk-neutral agent’s utility (the difference between the

surplus and payment) is
∫ v

0
x̄C(z) dz = p̄II(v). Convexity of x̄C(·), from part 1 of

Lemma 5.9, implies that the risk-neutral payment is at least half the surplus, and so

is at least the risk-neutral utility. The lemma follows, then, by the same argument

as in the previous part.

Part 3.: Ev[p̄
III(v)] ≤ Ev[(v − C)+ · x̄C(v)] = Ev[(v − C)+ · xC(v)].

The statement is trivial for v ≤ C so assume v ≥ C. By definition x̄C(v) = xC(v)

for v > C. By (5.2), xC(·) is monotone non-decreasing. Hence, for v > C, p̄III(v) =

2Note: This equality does not require monotonicity of the allocation rule x̄(·); as long as part 2 of Theorem 5.1
formulaically holds, part 3 follows from integration by parts.
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∫ v
C
xC(z) dz ≤

∫ v
C
xC(v) dz = (v−C) · xC(v). Plugging in (v−C)+ = max(v−C, 0)

and taking expectation over v, we obtain the bound.

�

5.5. Approximation Mechanisms and a Payment Identity

In this section we first give a payment identity for Bayes-Nash equilibria in mechanisms

that charge agents a deterministic amount upon winning (and zero upon losing). Such

one-priced payment schemes are not optimal for capacitated agents; however, we will show

that they are approximately optimal. In both symmetric and asymmetric cases, we use this

payment identity to prove that the first-price auction is approximately optimal. We also give

a simple direct-revelation one-priced mechanism that is BIC and approximately optimal and

improves on the approximation guarantees of the first-price auction.

5.5.1. A One-price Payment Identity

For risk-neutral agents, the Bayes-Nash equilibrium conditions entail a payment identity:

given an interim allocation rule, the payment rule is fixed (Theorem 5.1, part 2). For risk-

averse agents there is no such payment identity: there are mechanisms with identical BNE

allocation rules but distinct BNE payment rules. We restrict attention to auctions wherein

an agent’s payment is a deterministic function of her value (if she wins) and zero if she loses.

We call these one-priced mechanisms; for these mechanisms there is a (partial) payment

identity.

We consider a single agent and the induced allocation rule she faces from a Bayesian

incentive compatible auction (or, by the revelation principle, any BNE of any mechanism).

This allocation rule internalizes randomization in the environment and the auction, and
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specifies the agents’ probability of winning, x(v), as a function of her value. Given allocation

rule x(v), the risk-neutral expected payment is pRN(v) = v ·x(v)−
∫ v

0
x(z) dz (Theorem 5.1,

part 2). Given an allocation rule x(v), a one-priced mechanism with payment rule p(v) would

charge the agent p(v)/x(v) upon winning and zero otherwise (for an expected payment of

p(v)). Define pVC(v) = (v−C) ·x(v) which, intuitively, gives a lower bound on a capacitated

agent’s willingness to trade-off decreased probability of winning for a cheaper price.

Theorem 5.11. An allocation rule x and payment rule p are the BNE of a one-priced

mechanism if and only if (a) x is monotone non-decreasing and (b) if p(v) ≥ pVC(v) for all

v then p = pC is defined as

pC(0) = 0, (5.10)

pC(v) = max

(
pVC(v), sup

v−<v

{
pC(v−) + (pRN(v)− pRN(v−))

})
. (5.11)

Moreover, if x is strictly increasing then p(v) ≥ pVC(v) for all v and p = pC is the unique

equilibrium payment rule.

The payment rule should be thought of in terms of two “regimes”: when pC = pVC,

and when pC > pVC, corresponding to the first and second terms in the max argument of

(5.11) respectively. In the latter regime, (5.11) necessitates that d
dv
pC(v) = d

dv
pRN(v); for

nearby such points v and v+ ε, the v− involved in the supremum will be the same, and thus

pC(v + ε)− pC(v) = pRN(v + ε)− pRN(v).

The proof is included in Section D.3. The main intuition for this characterization is that

risk-neutral payments are “memoryless” in the following sense. Suppose we fix pRN(v) for

a v and ignore the incentive of an agent with value v+ > v to prefer reporting v− < v,
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then the risk-neutral payment for all v+ > v is pRN(v+) = p(v) +
∫ v+
v

(x(v+)−x(z)) dz. This

memorylessness is simply the manifestation of the fact that the risk-neutral payment identity

imposes local constraints on the derivatives of the payment, i.e., d
dv
pRN(v) = v · d

dv
x(v).

There is a simple algorithm for constructing the risk-averse payment rule pC from the

risk-neutral payment rule pRN (for the same allocation rule x).

(0) For v < C, pC(v) = pRN(v).

(1) The pC(v) = pRN(v) identity continues until the value v′ where pC(v′) = pVC(v′),

and pC(v) switches to follow pVC(v).

(2) When v increases to the value v′′ where d
dv
pRN(v′′) = dpVC

dv
(v′′) then pC(v) switches

to follow pRN(v) shifted up by the difference pVC(v′′) − pRN(v′′) (i.e., its derivative

d
dv
pC(v) follows d

dv
pRN(v)).

(3) Repeat this process from Step 1.

Lemma 5.12. The one-priced BIC allocation rule x and payment rule pC satisfy the

following

(1) For all v, pC(v) ≥ max(pRN(v), pVC(v)).

(2) Both pC(v) and pC(v)/x(v) are monotone non-decreasing.

The proof of part 2 is contained in the proof of Lemma D.3 in Section D.3, and part 1

follows directly from equations (5.10) and (5.11).

5.5.2. Approximate Optimality of First-price Auction in Symmetric Settings

We show herein that for agents with a common capacity and values drawn i.i.d. from a

continuous, regular distribution F with strictly positive density the first-price auction is

approximately optimal.
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It is easy to solve for a symmetric equilibrium in the first-price auction with identical

agents. First, guess that in BNE the agent with the highest value wins. When the agents are

i.i.d. draws from distribution F , the implied allocation rule is x(v) = F n−1(v). Theorem 5.11

then gives the necessary equilibrium payment rule pC(v) from which the bid function bC(v) =

pC(v)/x(v) can be calculated. We verify that the initial guess is correct as Lemma 5.12

implies that the bid function is symmetric and monotone. There is no other symmetric

equilibrium.3 Moreover, Chawla and Hartline [2013] show that there are no asymmetric

equilibria of the first-price auction for a class of environments including ours.

Proposition 5.13. The first-price auction for identical (capacity and value distribution)

agents has a unique BNE wherein the highest valued agent wins.

The expected revenue at this equilibrium is nEv[p
C(v)]. Lemma 5.12 implies that pC is

at least pRN and pVC.

Corollary 5.14. The expected revenue of the first-price auction for identical (capacity

and value distribution) agents is at least that of the capacitated second-price auction and at

least that of the second-price auction.

In conjunction with Theorem 2.9 by Bulow and Klemperer [1996], this now allows us to

use the capacitated first-price auction to approximate each of the three terms in the revenue

bound of Theorem 5.7, giving us our main result:

3Any other symmetric equilibrum must have an allocation rule that is increasing but not always strictly so.
For this to occur the bid function must not be strictly increasing implying a point mass in the distribution
of bids. Of course, a point mass in a symmetric equilibrium bid function implies that a tie is not a measure
zero event. Any agent has a best response to such an equilibrium of bidding just higher than this pointmass
so at essentially the same payment, she always “wins” the tie.
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Theorem 5.15. For symmetric, regular environments with n ≥ 2 agents having common

capacities, the revenue in the BNE of the first price auction (FPA) is a 5-approximation to

the optimal revenue.

Proof. An immediate consequence of Theorem 2.9 is that for n ≥ 2 risk-neutral, regular,

i.i.d. bidders, the second-price auction extracts a revenue that is at least half the optimal

revenue; hence, by Corollary 5.8, the optimal revenue for capacitated bidders by any BIC

mechanism is at most four times the second-price revenue plus the capacitated second-price

revenue. Since the first-price auction revenue in BNE for capacitated agents is at least the

capacitated second-price revenue and the second-price revenue, the first-price revenue is a

5-approximation to the optimal revenue.4 �

5.5.3. Approximate Optimality of First-Price Auctions in Asymmetric Settings

We now consider the case of asymmetric value distributions and capacities. For risk-neutral

settings, Chapter 3 showed an approach for analyzing the revenue of the first-price auction in

asymmetric settings, achieving approximation bounds of 3e/(e−1) for the first-price auction

with at least two bidders from each distribution.

We can also extend this result to asymmetric settings by using Theorem 3.12 from Chap-

ter 3 to compare the revenue of the risk-neutral first-price auction to the risk-neutral optimal

auction.

Theorem 5.16. For asymmetric, regular environments, where k ≥ 2 agents have values

drawn from each distribution Fi and a common capacity Ci, the revenue in any BNE of the

First-Price Auction is a 7e−1
e−1
≈ 10.5 approximation to the revenue of the optimal auction.

4In fact, the Bulow and Klemperer [1996] result shows that the second-price auction is asymptotically
optimal; using this, our result can be tightened to a (3 + 2

n−1 )-approximation.
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If we knew that the revenue of the capacitated first-price auction is greater than the

revenue of the risk-neutral first-price auction, then we could immediately attain the result

by using Theorem 3.12 in place of Theorem 2.9 in the proof of Theorem 5.15. However,

the allocation rule of the first-price auction is not efficient in asymmetric settings, and will

potentially be different between the normal and the capacitated settings, rather than the

first-price auction.

However, nowhere in the proof of Theorem 3.12 depended on the exact allocation rule

between agents of different types. Rather, it depended on how agents react to distributions

of bids, as well as risk-neutral virtual values serving as an amortization of first-price revenue.

Capacitated agents will bid higher than risk-neutral agents, and risk-neutral virtual values

will serve as a lower bound on first-price revenue, and so Theorem 3.12 is easily extended

to hold for capacitated agents, to give Rev(FPA) ≥ 3e
e−1

Rev(Opt). Integrating into the

proof of Theorem 5.15 in place of the bound of 2 from Theorem 2.9 gives our desired result,

a bound of 7e−1
e−1
≈ 10.5 as compared to the revenue optimal auction.

Much of the loss in the approximation factor of Theorem 5.16 comes from not knowing

the allocation rule. The best one-priced auction can do significantly better: we show here it

is at least a three approximation to the optimal.

Theorem 5.17. For n (non-identical) agents with capacities C1, . . . , Cn, and regular

value distributions F1, . . . , Fn, there is a one-priced BIC mechanism whose revenue is at

least one third of the optimal (two-priced) revenue.

Proof. Recall from Theorem 5.7 that either the risk-neutral optimal revenue or

Ev1,...,vn [max{(vi − Ci)+}] is at least one third of the optimal revenue. We apply Theo-

rem 5.11 to two monotone allocation rules for each agent:
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(1) the interim allocation rule of the risk-neutral optimal auction, and

(2) the interim allocation rule specified by: serve agent i that maximizes vi − Ci, if

positive; otherwise, serve nobody.

As both allocations are monotone, we apply Theorem 5.11 to obtain two single-priced

BIC mechanisms. By Lemma 5.12, the expected revenue of the first mechanism is at least

the risk neutral optimal revenue, and the expected revenue of the second mechanism is at

least Ev1,...,vn [max{(vi − Ci)+}]. The theorem immediately follows for the auction with the

higher expected revenue. �

Although Theorem 5.17 is stated as an existential result, the two one-priced mechanisms

in the proof can be described analytically using the algorithm following Theorem 5.11 for cal-

culating the capacitated BIC payment rule. The interim allocation rules are straightforward

(the first: xi(vi) =
∏

j 6=i Fj(ϕ
−1
j (ϕi(vi))), and the second: xi(vi) =

∏
j 6=i Fj(vi − Ci + Cj)),

and from these we can solve for pCii (v).

5.6. First Price Auctions with CARA Agents

In this section, we generalize the Bulow-Klemperer result that competition can approx-

imately replace a reserve price (Theorem 2.9) to the case of symmetric, risk-averse bidders

with constant absolute risk-aversion (CARA) utility functions. A CARA utility function has

the form

U(z) =
1− e−Rz

R
,

for some parameter of risk-aversion R. As R → 0, U(z) → z and agents behave as if

risk-neutral; as R → ∞, the agent approaches being so risk-averse that she is bidding to

maximize her chance of winning, subject to paying less than her value.
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5.6.1. Bidding Behavior

Hu et al. [2010] show that the only equilibrium of a first-price auction with symmetric CARA

bidders will be symmetric, and each bidders bid function will be:

bi(vi) =
1

R
log

(
eRvi −R

∫ vi

0

F (z)

F (vi)
eRz dz

)
. (5.12)

We can generalize this beyond the first-price auction to first-price style auctions. Consider

a general allocation rule xi(vi). The payment rule pi combined with xi gives a BNE if and

only if

bi(vi) =
1

R
log

(
eRvi −R

∫ vi

0

xi(z)

xi(vi)
eRz dz

)
(5.13)

= vi +
1

R
log

[
1−R

∫ vi

0

xi(z)

xi(vi)
e−R(vi−z) dz

]
(5.14)

5.6.2. Characterizing Revenue in Equilibrium

We begin by presenting a characterization of the revenue, in the line of Myerson’s [1981]

virtual value based characterization of revenue in equilibrium for risk-neutral agents.

Lemma 5.18. For symmetric, single-item CARA environments, the revenue of a first-

price-style auction A with CARA bidders satisfies

Rev(A) =
∑
i

∫ 1

0

φxi (vi)xi(vi) f(vi) dvi, (5.15)

where φxi (vi) is the risk-averse virtual value,

φxi (vi) = vi −
1

f(vi)

∫ 1

vi

f(z)

e−R(vi−z) +R
∫ vi

0
xi(y)
xi(z)

e−R(vi−y) dy
dz. (5.16)
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The risk-averse virtual value represents an amortization of revenue across the bidders

in the auction, just as the risk-neutral virtual value φ(v) = v − 1−F (v)
f(v)

does for risk-neutral

environments. Note that the risk-averse virtual value does depend on the allocation rule,

as opposed to the risk-neutral virtual value. The risk-averse virtual value thus can only be

used to account for the revenue, it cannot as directly be used for determining the optimal

auction. Changing the allocation rule to serve more higher virtual valued agents will not

necessarily result in more revenue, as it may change the virtual values of all the bidders.

Proof of Lemma 5.18. By the CARA first-price payment rule, the bid of the agents

satisfies

bi(vi) = vi +
1

R
log

[
1−R

∫ vi

0

xi(z)

xi(vi)
e−R(vi−z) dz

]
(5.17)

Rewriting log as
∫

1
z
dz and then substitution with w(z) = R

∫ z
0

xi(y)
xi(vi)

e−R(vi−y) dy, and

w′(z) = R xi(z)
xi(vi)

e−R(vi−y) dy gives:

bi(vi) = vi +
1

R
log

[
1−R

∫ vi

0

xi(z)

xi(vi)
e−R(vi−z) dz

]

= vi +
1

R

∫ 1−R
∫ vi
0

xi(y)

xi(vi)
e−R(vi−y) dy

1

1

z
dx

= vi −
1

R

∫ R
∫ vi
0

xi(y)

xi(vi)
e−R(vi−y) dy

0

1

1 + z
dz

= vi −
∫ vi

0

xi(z)
xi(vi)

e−R(vi−z)

1 +R
∫ z

0
xi(y)
xi(vi)

e−R(vi−y)dy
dz (5.18)
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We can then integrate over expected values to get the expected revenue from agent i:

Revi =

1∫
0

bi(vi)xi(vi)fi(vi) dvi

=

1∫
0

vi − vi∫
0

xi(z)
xi(vi)

e−R(vi−z)

1 +R
∫ z

0
xi(y)
xi(vi)

e−R(vi−y)dy
dz

xi(vi)fi(vi) dvi.

=

1∫
0

vixi(vi)fi(vi)dvi −
1∫

0

vi∫
0

xi(z)
xi(vi)

e−R(vi−z)

1 +R
∫ z

0
xi(y)
xi(vi)

e−R(vi−y)dy
dz xi(vi) fi(vi) dvi.

=

1∫
0

vixi(vi)fi(vi)dvi −
1∫

0

 1∫
z

xi(vi)fi(vi)e
−R(vi−z)

fi(z)(xi(vi) +R
∫ z

0
xi(y)e−R(vi−y)dy)

dvi

xi(z) fi(z) dz.

The last step followed by swapping the order of integration. Swapping z and vi in the

second integral and recombining the integrals gives

Revi =

1∫
0

vixi(vi)fi(vi)dvi −
1∫

0


1∫

vi

xi(vi)fi(z)e−R(z−vi)

fi(vi)(xi(z) +R
vi∫
0

xi(y)e−R(z−y)dy)

dz

xi(vi) fi(vi) dvi

=

1∫
0

vi − 1∫
vi

xi(z)fi(z)e−R(z−vi)

fi(vi)(xi(z) +R
∫ vi

0
xi(y)e−R(z−y)dy)

dz

xi(vi) fi(vi) dvi (5.19)

=

1∫
0

φxi (vi)xi(vi) fi(vi) dvi. (5.20)

Summing over all agents gives our desired result. �

5.6.3. Extending Bulow Klemperer Results

We first define a regularity condition analogous to risk-neutral regularity of a distribution:

the virtual-value must be non-decreasing.
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Definition 5.3. A distribution is CARA-regular for risk parameter R and allocation

rule x if φxi (v) is monotone non-decreasing in v.

Theorem 5.19. For symmetric, single-item, CARA-regular, CARA environments with

n agents, the revenue of the first-price auction is at least an (1− 1/n) fraction of the first-

price auction with an optimal reserve. Moreover, as agents become more risk averse, the

bound approaches 1. Specifically,

Rev(FPA) ≥
(

1− 1

n

)
Rev(FPAR). (5.21)

The proof now proceeds in two steps: first, we bound the revenue that the first-price

auction loses to serving negative virtual values using the same techniques as in the risk-

neutral case; second, we compare the virtual values in the first-price auction to the virtual

values in the first-price auction with reserve.

Proof. To align with the risk-neutral proof, we will refer to agents by their quantile,

q = 1− Fi(v), and use the inverse value function v(q) = F−1
i (1− q). Let φxi (q) = φxi (v(q)).

Let Ri(q) =
∫ 1

0
φxi (q) dq be the “risk-averse revenue curve” for a given quantile. Note

that this revenue curve is not generated by considering the revenue from selling to an agent

with probability q: it is rather only playing the role of the risk-neutral revenue curve in the

calculation of revenue, as a change of variables and integration by parts gives

Revi =

∫ 1

0

φxi (vi)xi(v)f(v) dvi (5.22)

=

∫ 1

0

φxi (q)xi(q) dq (5.23)

=

∫ 1

0

−x′i(q)Ri(q) dq. (5.24)
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As Ri(q) is concave in q and the allocation rule is identical to the risk-neutral setting,

we can reduce directly to the risk-neutral setting. Theorem 2.9 gives

Revi =

∫ 1

0

−x′i(q)Ri(q) dq.

≥ n− 1

n

∫ 1

0

−x′i(q)R+(q) dq

≥ n− 1

n
Rev+

i . (5.25)

We now compare Rev+
i to the revenue from the first-price auction with reserve.

Let x∗ be the allocation rule for the first-price auction with optimal reserves; thus the

virtual values are:

φx
∗

i (vi) = vi −
1

fi(vi)

∫ 1

vi

fi(z)

e−R(vi−z) +R
∫ vi

0

x∗i (y)

x∗i (z)
e−R(vi−y) dy

dz. (5.26)

As x∗ is the allocation rule for the first-price auction with a reserve, we know that for

any y < z,
x∗i (y)

x∗i (z)
≤ xi(y)

xi(z)
: either y is above the reserve and

x∗i (y)

x∗i (z)
= xi(y)

xi(z)
or below the reserve

and
x∗i (y)

x∗i (z)
= 0.5

φ
x∗i
i (vi) = vi −

1

fi(vi)

∫ 1

vi

fi(z)

e−R(vi−z) +R
∫ vi

0

x∗i (y)

x∗i (z)
e−R(vi−y) dy

dz (5.27)

≤ vi −
1

fi(z)

∫ 1

vi

fi(z)

e−R(vi−z) +R
∫ vi

0
xi(y)
xi(z)

e−R(vi−y) dy
dz (5.28)

= φxi (vi) (5.29)

5We need only consider the case that x∗i (z) > 0.
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We can then upper bound the optimal revenue with the revenue from agents with positive

virtual values in the first price auction:

Rev+(A) =
∑
i

∫ 1

0

max(0, φxi (vi))xi(vi) fi(vi) dvi (5.30)

≥
∑
i

∫ 1

0

max(0, φx
∗

i (vi))xi(vi) fi(vi) dvi (5.31)

≥
∑
i

∫ 1

0

φx
∗

i (vi)xi(vi) fi(vi) dvi (5.32)

= Rev(FPAR) (5.33)

Combining Equations (5.25) and (5.33) and summing over agents gives our desired result,

Rev(A) ≥ n−1
n
Rev(FPAR). �

5.7. Conclusions

For the purpose of keeping the exposition simple, we have applied our analysis only to

single-item auctions. Our techniques, however, as they focus on analyzing and bounding

revenue of a single agent for a given allocation rule, generalize easily to structurally rich

environments. Notice that the main theorems of Sections 5.3, 5.4, and the first part of

Section 5.5 do not rely on any assumptions on the feasibility constraint except for downward

closure, i.e., that it is feasible to change an allocation by withholding service to an agent

who was formerly being served.

For example, our prior-independent 5-approximation result (Theorem 5.15) generalizes to

symmetric feasibility constraints such as position auctions. A position auction environment

is given by a decreasing sequence of weights α1, . . . , αn and the first-price position auction

assigns the agents to these positions greedily by bid. With probability αi the agent in
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position i receives an item and is charged her bid; otherwise she is not charged. (These

position auctions have been used to model pay-per-click auctions for selling advertisements

on search engines where αi is the probability that an advertiser gets clicked on when her ad

is shown in the ith position on the search results page.) For agents with identical capacities

and value distributions, the first-price position auction where the bottom half of the agents

are always rejected is a 5-approximation to the revenue-optimal position auction (that may

potentially match all the agents to slots).

Our one- versus two-price result (Theorem 5.17) generalizes to asymmetric capacities,

asymmetric distributions, and asymmetric downward-closed feasibility constraints. A down-

ward-closed feasibility constraint is given by a set system which specifies which subset of

agents can be simultaneously served. Downward-closure requires that any subset of a fea-

sible set is feasible. A simple one-priced mechanism is a 3-approximation to the optimal

mechanism in such an environment. The mechanism is whichever has higher revenue of the

standard (risk neutral) revenue-optimal mechanism (which serves the subset of agents with

the highest virtual surplus, i.e., sum of virtual values) and the one-priced revelation mecha-

nism that serves the set of agents S that maximizes
∑

i∈S(vi − Ci)+ subject to feasibility.

A main direction for future work is to relax some of the assumptions of our model.

Our approach to optimizing over mechanisms for risk-averse agents relies on (a) the simple

model of risk aversion given by capacitated utilities and (b) that losers neither make (i.e.,

ex post individual rationality) nor receive payments (i.e., no bribes). These restrictions are

fundamental for obtaining linear incentive compatibility constraints. Of great interest in

future study is relaxation of these assumptions.
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Our analytical (and computational) solution to the optimal auction problem for agents

with capacitated utilities requires an ex post individual rationality constraint on the mech-

anism that is standard in algorithmic mechanism design. This constraint requires that an

agent who loses the auction cannot be charged. While such a constraint is natural in many

settings, it is with loss and, in fact, ill motivated for settings with risk-averse agents. One

of the most standard mechanisms for agents with risk-averse preferences is the “insurance

mechanism” where an agent who may face some large liability with small probability will

prefer to pay a constant insurance fee so that the insurance agency will cover the large lia-

bility in the event that it is incurred. This mechanism is not ex post individually rational.

Does the first-price auction (which is ex post individual rational) approximate the optimal

interim individually rational mechanism?

For CARA agents, our results provide bounds relative to the first-price auction with

optimal reserve prices. We do not yet have bounds comparing either of these quantities to

the optimal mechanism from Matthews [1983]. We would also like to understand a simpler

set of conditions for regularity.
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CHAPTER 6

Simplifying Strategic Behavior: The Utility-Target Auction

In this chapter, we explore the nature of strategic behavior from a different perspective

than the earlier chapters: we focus on a revelation mechanism, the utility-target auction.

Rather than bidding for how much to pay, in the utility target auction bidders report their

valuations and then bid for how much utility they want to receive from the mechanism.

This simplifies the strategic behavior of agents in complicated settings while inheriting good

performance guarantees from profit-target bidding strategies in first-price auctions.

This chapter also differs in that it focuses on full-information settings, and dynamics in

full information settings where bidders learn of the behavior of others only through their

own participation in the mechanism.
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6.1. Introduction

In 1961, Vickrey initiated the formal study of auctions. He first considered common

auctions of the day — including the first-price auction, the Dutch auction, and the English

auction — and studied their equilibria. Vickrey observed that the English auction was, in

theory, more robust because each agent had a strategy that dominated all others regardless

of other agents’ bids. As a solution, he proposed1 the second-price auction as a means to

achieve the same robustness in a sealed-bid format. The subsequent development of auction

theory largely followed Vickrey’s paradigm: existing auctions were evaluated in terms of

their equilibria, meanwhile the field of mechanism design emerged with dominant strategy

incentive compatibility as a sine qua non.

Fifty years later, it is apparent that Vickrey’s analysis does not always give best guide to

implementing a real auction. In mechanisms without dominant strategies, Vickrey’s original

concern still stands — equilibrium is a highly questionable predictor of outcome due (at least

in part) to agents’ informational limitations [Vickrey, 1961; Harrison, 1989]. Neither is dom-

inant strategy incentive compatibility a magic solution: incentive compatible mechanisms

have sufficiently many drawbacks that their real attractiveness rarely matches theory — the

simple and elegant second-price auction has earned the title “Lovely but Lonely” [Ausubel

and Milgrom, 2006] for its sparse use. Even the supposition that bidders will play strategies

that are theoretically dominant is discredited by a wide variety of practical issues [Klemperer,

2002].

Dynamic analysis offers a powerful complement to Vickrey’s static approach. For exam-

ple, certain behavior will be clearly irrational when an auction is repeated. Such reasoning

1While Vickrey was the first to discover the second-price auction in the economics literature, it has been
used in practice as early as 1893 [Lucking-Reiley, 2000].
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was used by Edelman and Schwarz [2010] in the context of the generalized second-price

(GSP) ad auction — they analyzed a dynamic game to derive bounds on reasonable out-

comes of the auction, then studied the static game under the assumption that these bounds

were satisfied. Dynamic settings also introduce new pitfalls: Edelman and Ostrovsky [2007]

showed that the instability of Overture’s generalized first-price (GFP) ad auction could be

attributed to its lack of a pure-strategy equilibrium.

We study repeated first-price auctions and show that they offer powerful performance

guarantees. We begin with a static perspective and observe that the equilibrium properties

of the auction depend significantly on the types of bids that bidders can express. We propose

a generalization of the first-price auction called the utility-target auction which effectively

encapsulates truncation or profit-target bidding strategies which have been shown to perform

well in first-price and ascending proxy package auctions [Milgrom, 2004; Day and Milgrom,

2007].

We show that the utility-target auction effectively inherits the static performance guar-

antees of profit-target bidding strategies in general settings, with many advantages over

incentive compatible mechanisms in a static equilibrium analysis, including revenue, sim-

plicity, and transparency.

More significantly, we show that the same performance guarantees may be derived using

only a few simple behavioral axioms and limited information in a repeated setting. These

dynamic results are particularly powerful because they do not require an a priori assumption

that the auction will reach equilibrium — for example, assuming only that losers will not

wait too long to raise their bids the auctioneer’s revenue satisfies a natural lower bound

regardless of whether bidders’ behavior converges to equilibrium. Moreover, bidders need only

know if they are winning or losing to implement the dynamics. We build on these axioms to
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demonstrate behavior that offers progressively stronger performance guarantees, culminating

with a set of axioms that together imply convergence to the egalitarian equilibrium.

First-Price Auctions. The virtues of a first-price auction — and other auctions in the pay-

your-bid family — arise from its simplicity. From the bidders’ perspective, the pay-your-

bid property offers transparency, credibility, and privacy: not only is the auction easy to

understand, but it ensures that the auctioneer cannot cheat (say, by unreasonably inflating

the reserve price in a repeated auction) and allows a bidder to participate without expressing

her true willingness to pay.

The auctioneer can also benefit from this simplicity because agents’ bids represent guar-

anteed revenue. By comparison, the revenue from a dominant strategy incentive compatible

auction is almost always less than the bids and, in the most general settings, may even be

zero [Ausubel and Milgrom, 2006; Roberts, 1979]. Supposing a first-price auction reaches

equilibrium, a variety of work presents settings where they generate more revenue for the

seller than their incentive compatible brethren [Milgrom, 2004; Leme et al., 2012; Hoy et al.,

2012] (though they may also generate less revenue [Maskin and Riley, 2000]).

Yet, running a first-price auction is risky. While first-price auctions have been quite suc-

cessful in settings like procurement auctions, Overture’s generalized first-price (GFP) auction

for sponsored search advertising was erratic: bids rapidly rose and fell in a sawtooth pat-

tern, rendering the auction unpredictable and depressing revenue [Edelman and Ostrovsky,

2007]. As a result, the sponsored search industry has moved to a generalized second-price

(GSP) auction that leverages the intuition of the second-price auction to dis-incentivize small

adjustments to a agent’s bid.

The challenges of a first-price auction are many and complex. Vickrey identified a major

source of risk in the first-price single-item auction: since a rational bidder’s optimal bid
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depends on other agents’ bids, actual behavior will depend on beliefs about others’ strategies.

A first-price auction also requires bidders to strategize, a task that is may be difficult and

expensive. At best, agents will be in a Bayes-Nash equilibrium, and, at worst, they will be

completely unpredictable. Indeed, predicting the outcome of a first-price auction lies at the

center of a lively debate between experimental and theoretical economists [Harrison, 1989].

Experience with GFP highlights another potential pitfall of first-price auctions: when

generalized beyond the single-item setting, a first-price auction may not have a pure-strategy

equilibrium. Edelman and Ostrovsky [2007] showed that this was the case with GFP and

demonstrated how it generated the rapid sawtooth behavior seen in practice. Our goal is to

demonstrate that how proper design coupled with dynamic arguments can support strong

performance guarantees.

The Utility-Target Auction. The equilibria and performance of a pay-your-bid auction de-

pend on its implementation. Within the pay-your-bid constraint, the auctioneer chooses the

form of agents’ bids, potentially restricting or broadening the bids that agents may express.

The historical performance of the GFP ad auction exemplifies the importance of choosing

a good bidding language. In the GFP auction, advertisers placed a single bid and paid the

bid price for each click regardless of where their ads were shown. In retrospect, the rapid

sawtooth motion observed in bids is not surprising because the auction had no pure-strategy

equilibrium [Edelman et al., 2007; Edelman and Ostrovsky, 2007]; however, as we show and

as Dütting et al. [2014] have shown, a pure-strategy equilibrium would have existed if bidders

could have placed more expressive bids, such as bidding different prices for each slot.

A natural question arises: what are good bidding languages and how complicated must a

language be to offer good performance? In GFP, the bidding language is precisely sufficient
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to represent any possible valuation function; hence, it is possible that bids may need to be

more expressive than the space of valuation functions.

We show that the overhead required for a good bidding language is at most a single

value: it is sufficient to ask bidders for their valuation function and their final desired utility.

We call such an auction a utility-target auction: a agent’s bid includes a specification of her

value for every outcome and a single number representing the utility-target that she requests

regardless of the outcome. Her payment is her claimed value for the final outcome minus the

utility-target that she requested, and the auctioneer chooses the outcome that maximizes the

total payment. In essence, the utility-target auction isolates the single dimension (utility)

along which a bidder truly wishes to strategize

We begin with a static analysis of the utility-target auction’s equilibria. We first show

that the utility-target auction is quasi-incentive compatible: a bidder never has an incentive

to misreport her valuation function — it is always sufficient for her to manipulate the utility-

target she requests. We show that a pure-strategy equilibrium always exists and that the

egalitarian equilibrium is efficiently computable. These results are really driven by the fact

that the utility target auction allows bidders to communicate a profit-target bidding strategy

with less strategic communication, and profit-target bidding strategies always exist.

Next, we show that the utility-target auction equilibria have good performance, effec-

tively inheriting the performance guarantees of profit-target/truncation bidding strategies

in package auctions [Milgrom, 2004; Day and Milgrom, 2007]. Similar to the approach of

Edelman et al. [2007] on the generalized second-price (GSP) auction, we show that all equi-

libria satisfying a natural envy-free criterion have good performance. First, such equilibria

are efficient and generate at least as much revenue as the incentive compatible Vickrey-

Clarke-Groves (VCG) mechanism. Moreover, they generate revenue even when the incentive
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compatible mechanisms fail — the revenue of the envy-free equilibria of a utility-target auc-

tion all meet an intuitive benchmark we call the second-price threat, even settings where the

VCG mechanism may make little or no revenue.

Dynamic Analysis through Behavioral Axioms. A significant novelty of our work is our use of

simple behavioral axioms to prove guarantees on the performance of utility-target auctions.

Dynamic arguments are generally fraught with peril: in addition to being difficult to

prove, more complex auctions (or markets, or games) require more complex bidding behav-

ior to converge to an equilibrium and therefore sacrifice robustness. For example, Walrasian

tâtonnement2 [Walras, 1954] is perhaps the earliest concrete dynamic procedure proposed

in economics — it converges in general markets when modeled as a particular continuous

process [Samuelson, 1941; Arrow et al., 1959] but may or may not converge as a discrete pro-

cess [Bala and Majumdar, 1992; Cole and Fleischer, 2008]. More recent results have sought

stronger guarantees, e.g. by showing that agents’ behavior will converge to equilibrium in

repeated games as long as their learning strategies are “adaptive and sophisticated” [Mil-

grom and Roberts, 1991] or no-regret [Hart and Mas-Colell, 2000; Even-dar et al., 2009].

However, these properties are sufficiently complicated that it is difficult to evaluate whether

agents’ strategies indeed satisfy them in practice.

In contrast, we build simple behavioral axioms and use them to prove performance guar-

antees. Our first axioms are that (a) a bidder who is losing will raise her bid to try to

win, and (b) a bidder who is losing is more impatient than a bidder who is winning. After

formalizing these axioms in the context of utility-target auctions, we show that the auction

will eventually reach an outcome that satisfies a natural notion of envy-freeness and, by

2To justify market equilibrium as a predictor of actual market behavior, Leon Walras described a dynamic
procedure called tâtonnement that might converge to it.
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extension, a natural second-price type bound on revenue. Significantly, this result neither

implies nor requires that agents’ bids converge to a steady-state. Moreover, bidder behavior

requires only knowing whether one is winning or losing, not the precise bids of other agents.

Next, we show that bidders will not overpay if two more axioms are also satisfied, namely

that (c) bidders who are winning will try to lower their bid to save money. Axioms (a)-(c)

guarantee that bids will ultimately remain close to the boundary between envy-free and

non-envy-free outcomes, a boundary which contains the envy-free equilibria. These axioms

offer a degree of robustness, since bids will seek this boundary even as bids and ads change.

Finally, we show that bids will converge to the egalitarian equilibrium — the equilibrium

that distributes utility most evenly — if a fourth axiom is satisfied. The fourth axiom

concerns the timing of raised bids: (d) the bidder who has the most value at risk is the least

patient and therefore raises her bid first. When bidder behavior satisfies all five axioms (a)-

(d), we show that bids will converge to the egalitarian equilibrium. Together, these results

offer powerful guarantees about the performance of a utility-target auction in a repeated

setting.

Related Work. Our utility-target auction is most closely related to first-price package auc-

tions [Bernheim and Whinston, 1986] and the ascending proxy auction [Milgrom, 2004].

Profit-target bidding in these auctions is closely related to quasi-truthful bidding in utility-

target auctions, and the static properties we prove in Section 6.4 all have direct analogues.

our dynamic analysis is entirely new, a more general confirmation of Milgrom’s postulate

that profit-target equilibria “may describe a central tendency for some kinds of environ-

ments” [Milgrom, 2004].

Auctions in which a agent’s bid directly specifies her payment are known as pay-your-bid

auctions. The first-price auction, as well as the Dutch an English auctions, are members of
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this family. Our utility-target auction is closely related to first-price and ascending proxy

package auctions [Milgrom, 2004]. Engelbrecht-Wiggans and Kahn [1998] explored multi-

unit, sealed-bid pay-your-bid auctions and found their equilibria to be substantially different

from the standard first-price auction — the core issue they encounter is the same one arising

in GFP.

A key reason repeated auctions may admit more robust performance guarantees is that

bidders can learn about others’ valuations. A similar informational exchange is present in and

a motivation for classic ascending auctions. In addition to his discussion of ascending proxy

auctions [Milgrom, 2004], Milgrom [2000] offers a broad discussion of this literature. Some

recent work studies ascending auctions for position auctions like sponsored search [Edelman

et al., 2007; Ashlagi et al., 2010].

Our work can also be seen through the lens of simple versus optimal mechanisms [Hartline

and Roughgarden, 2009]. The general goal of this line of research is to design a mechanism

that is simple and transparent while (possibly) sacrificing efficiency or revenue. For example,

Hart and Nisan analyze the tradeoff between the number of different bundles offered to a

buyer and an auction’s performance [Hart and Nisan, 2013]. By comparison, our results show

that a first-price auction can guarantee good performance when the bidding complexity is

only slightly larger than that of the valuation functions.

6.2. Definitions and Preliminaries

The utility-target auction is a generalization of the first-price auction. Its key feature is

an extra utility-target parameter in the bid — this parameter highlights the key dimension

along which bidders care to compete. It gives bidders sufficient flexibility to guarantee the
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existence of pure-strategy equilibria while minimizing the communication required between

the bidders and the auctioneer.

6.2.1. First-Price and Pay-Your-Bid Auctions.

An auction is a protocol through which agents bid to select an outcome. A standard sealed-

bid auction can be decomposed into three stages: (1) each agent i submits a bid bi, (2) the

auctioneer uses agents’ bids to pick an outcome o from a set O, and finally (3) each agent i

pays a price pi. The final utility of agent i is given by vi(o)− pi, where vi(o) ≥ 0 denotes i’s

value for the outcome o, i.e. vi ∈ Vi is i’s valuation function (drawn from a publicly known

set Vi).

From this perspective, the standard first-price auction is described as follows: (1) each

agent submits a single number bi ∈ <, (2) the auctioneer chooses to give the item to the

agent i∗ who submits the largest bid bi, and (3) the winner i∗ pays bi∗ and everyone else pays

zero. For comparison, the second-price auction is identical to the first-price auction except

that the price paid is equal to the second-highest value of bi.

When the outcomes are few, we will use vi and bi to denote the profile of values and bids

across outcomes, e.g., vi = (1, 1.5, 0).

When considering settings beyond the single-item auction there are many ways to gener-

alize the first-price auction. Even within the single-item setting, the auctioneer could choose

an arbitrary encoding for agents’ bids. Moreover, the auctioneer might choose an encoding

that changes the space of possible bids, e.g by forcing bidders to place integer bids when

values are actually real numbers. In such cases, the principle feature that we wish to preserve

is that the winner “pays what she bid,” or alternatively that a agent’s bid precisely specifies

her payment. Formally, we say that such an auction has the pay-your-bid property:
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Definition 6.1. An auction has the pay-your-bid property if the payment pi depends

only on the outcome o and i’s bid bi (it does not directly depend on others’ bids).

The first-price auction as described above clearly satisfies this property while a second-

price auction does not.

Not all sealed-bid pay-your-bid auctions are equivalent. Edelman et al. [2007] showed that

GFP, where the set of possible bids is precisely Vi, did not have a pure-strategy equilibrium:

Observation 6.1. The pay-your-bid property does not guarantee the existence of a

pure-strategy equilibrium in a sealed-bid auction when the space of bids is the same as the

space of valuation functions.

Moreover, as we discuss in Section 6.5, any pay-your-bid ad auction where bids are

restricted to a subset of Vi must suffer in terms of its welfare and revenue guarantees. Thus,

it is import to consider auctions that allows bids bi 6∈ Vi. This motivates us to introduce the

utility-target auction, a sealed-bid pay-your-bid auction that allows such bids and always

has pure-strategy equilibria with strong performance guarantees.

6.2.2. Utility-Target Auctions

A utility-target auction is a sealed-bid pay-your-bid auction with a special bidding language.

A agent’s bid specifies payments using two pieces of information: her valuation function

and the amount of utility she requests (a single real number). Her payment for an outcome

is her (claimed) valuation for that outcome minus the utility that she specified in her bid.

Formally:

Definition 6.2. A utility-target auction for a finite outcome space O is defined as follows:
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ALGORITHM 6.1: A generic utility-target auction.

input : Players’ bids bi = (xi, ωi)
output: An outcome o∗ and first-price payments pi.

1 Let bi(o) = max(0, xi(o)− ωi); // bi(o) is i’s effective bid for outcome o.
2 Compute o∗ = arg maxo

∑
i∈[n] bi(o); // Choose the outcome with the highest

total bid.

3 For all i, set pi = bi(o
∗); // Each agent pays what she bid.

• A bid is a tuple bi = (xi, ωi) where x ∈ Vi is a function mapping outcomes o ∈ O to

nonnegative values and ω is a real number. We call the parameters xi and ωi the

value bid and utility-target bid respectively.

• A bidder’s effective bid for outcome o is

bi(o) = max(xi(o)− ωi, 0) .

Note this may generate bi 6∈ Vi when the set Vi is sufficiently restricted.

• The auctioneer chooses the outcome o∗ ∈ O that maximizes
∑

i∈[n] bi(o). Ties are

broken in favor of the most-recent winning outcome when applicable.

• When the outcome is o, bidder i pays pi(o) = bi(o) and derives utility ui(o) =

vi(o) − bi(o). Note that if a bidder reports xi = vi, then ui(o) = ωi whenever

vi(o) ≥ ωi.

A generic utility-target auction is illustrated in Algorithm 6.1.

6.3. Quasi-Truthful Bidding

An idealist’s intuition for the utility-target auction is that agents truthfully reveal their

valuation function through their value bids (i.e. they bid bid xi = vi) and then use the

utility-target bid ωi to strategize. Clearly, bidders need not follow this ideal; however, it
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turns out that they have no incentive to do otherwise — the utility-target auction is quasi-

truthful in the sense that for any bid a agent might consider, there is another bid in which

she reveals vi truthfully and obtains at least as much utility:

Lemma 6.1 (Quasi-Truthfulness). Fix the total bid of agents j 6= i for all outcomes, i.e.

fix
∑

j∈[n]\{i} bj(o) for all o, and suppose ties are broken according to a fixed total-ordering on

outcomes. If bidder i gets uIi by bidding (xIi , ω
I
i ), then she gets the same utility uIi by bidding

(vi, u
I
i ).

Significantly, this implies bidder i always has a quasi-truthful best-response.

Proof. Since ties are broken according to a fixed total ordering, the outcome is fully

specified by the total bids for each outcome (i.e. by
∑

i∈[n] bi(o) for all o). Thus, given∑
j∈[n]\{i} bj(o) and a bid bIi = (xIi , ω

I
i ) for i, the outcome oI is uniquely defined. Let ωIi be

the utility i gets by bidding (xIi , ω
I
i ), i.e.

uIi = vi(o
I)− bi(oI) = vi(o

I)−max(xIi (o
I)− ωIi , 0) .

Now suppose i bids bQi = (vi, u
I
i ) instead of (xIi , ω

I
i ). There are two possible results of this

change:

• The outcome doesn’t change. If the outcome doesn’t change, then i gets the same

utility by construction.

• The outcome changes to oQ 6= oI . Notice that i did not change the amount bid for

outcome oI , so the total bid for oI did not change. Given this and the tie-breaking

rule, the only way the outcome can switch from oI to oQ is if the total bid for oQ
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strictly increased. Given that
∑

j∈[n]\{i} bj(o
Q) is fixed, this implies i’s bid for oQ

increased, i.e. bQi (oQ) > bIi (o
Q) ≥ 0.

Next, by definition of a utility-target auction, bi(o) > 0 implies xi(o) > ωi(o).

Since bQi (oQ) ≥ 0, this implies vi(o
Q) > ωQi , from which it immediately follows that

i’s final utility in oQ will be ωQi .

In either case, i’s final utility is precisely uIi , so i is indifferent between bidding (xIi , ω
I
i ) and

(vi, u
I
i ). �

6.4. Static Equilibrium Analysis

We begin by studying the utility-target auction from a static perspective and show that

they offer strong revenue and welfare guarantees. First, we show that pure-strategy equilibria

always exist:

Theorem 6.2. A utility-target auction with n outcomes always has a pure-strategy co-

operatively envy-free (defined below) equilibrium that is computable in time poly(n).

Specifically, the egalitarian equilibrium exists and is efficiently computable by Algo-

rithm 6.2 (proof omitted).

Next, we show that such cooperatively envy-free equilibria not only maximize welfare

but offer as much revenue as the VCG mechanism as well as a new revenue benchmark we

call the second-price threat (defined below):

Theorem 6.3. Any cooperatively envy-free equilibrium of a utility-target auction

(1) maximizes social welfare,

(2) dominates the revenue of the VCG mechanism,

(3) and has revenue lower-bounded by the second-price threat.
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We formalize and prove the theorem below.

6.4.1. Cooperatively Envy-Free Equilibria

While a typical utility-target auction may have many equilibria, some of them are unrealistic

in repeated auctions. In particular, it is possible to have an equilibrium in which a group of

“losers” envy the “winners” — the losers would be happy to collectively raise their bids to

make an alternate outcome win, but the outcome is an equilibrium because no single bidder

is willing to raise her bid high enough. In a repeated setting, one would expect all the losers

to eventually raise their bids.

For example, consider a setting with three bidders (A,B,C) and three outcomes (1, 2, 3),

in which the first two bidders are symmetric and value the first two outcomes and the third

bidder values only the third outcome. Let the specific values, indexed by outcome, be

vA = (1, 1.5, 0),

vB = (1, 1.5, 0),

vD = (0, 0, 2).

Now, let A and B bid for the first outcome, and C bid for the third outcome, with bids:

bA = (1, 0, 0), bB = (1, 0, 0) and bC = (0, 0, 2).

Bidders A and B would prefer the second outcome to the first as they see a value of 1.5

instead of 1. Moreover, they would be happy to make the second outcome win by cooperating

and each bidding 1 + ε. However, since both are bidding 0 for the second outcome, neither

can unilaterally cause the second outcome to win, making this outcome an equilibrium. The

problem in this example is that, at a total price of 2, bidders A and B would prefer that
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the second outcome wins. In a sense, bidders A and B in the second outcome envy the deal

they received in the first outcome.

Hence, we are interested in bids such that agents have no incentive to cooperatively

deviate to get a better outcome. We will call such a set of bids cooperatively-envy free.

To define such a notion, we must also consider bidders who are happy with the winning

outcome. Consider a four bidder setting with three possible outcomes, with the following

values:

vA = (1, 1.5, 0),

vB = (1, 1.5, 0),

vC = (1, 0.5, 0),

vD = (0, 0, 2).

In this case, C cannot get a better deal from the second outcome, so she will not cooperate

with A and B. In order to win, A and B must collectively bid 1.75 in the second outcome

to make up the deficit between it and the winning outcome (which they are willing to do).

Definition 6.3. The set of bids {bi}i∈[n] are cooperatively envy-free (CEF) if there is no

subset of bidders J ⊆ [n] who would prefer to cooperatively pay the extra money required

to make an alternate outcome o win over the current winner o∗.

Formally, a set of bids is cooperatively envy-free if

∑
i∈[n]

max ((vi(o)− bi(o))− (vi(o
∗)− bi(o∗)), 0) ≤

∑
i∈[n]

bi(o
∗)− bi(o)

for all outcomes o.
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The CEF constraints are similar to the core property described by Milgrom [2004] in

package auctions (as well as notions like group-strategyproofness); however, the notion of a

CEF outcome is weaker. For example, it does not require that bidders are playing equilibrium

strategies.

Equilibria that are CEF have nice properties analogous to those of core equilibria in

package auctions. The following claims are straightforward and proven in the appendix of

the full version of the paper:

Claim 6.4. CEF bids maximize welfare.

Claim 6.5. The revenue from CEF bids dominate that of the VCG mechanism: every

agent pays at least as much in the CEF equilibrium as she would in the VCG mechanism.

6.4.2. The “Second-Price Threat”

The revenue of a CEF equilibrium also meets or exceeds a benchmark we call the second-

price threat. The revenue of the second-price auction has a convenient intuition: the price

paid by the winner should be at least as large as the maximum willingness to pay of any

other bidder. We can ask the same question in more general settings: how much would

“losers” be willing to pay to get an outcome o instead of the socially optimal outcome o∗?

In general, agent i should be willing to pay up to vi(o)− vi(o∗) to help o beat o∗, hence we

can generalize the intuition of the second-price auction to give a natural lower bound on the

revenue the auctioneer might hope to earn:

Definition 6.4. The second-price threat for outcome o∗ is given by

max
o∈O

∑
i∈[n]

max(vi(o)− vi(o∗), 0) .
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ALGORITHM 6.2: An algorithm for computing the egalitarian equilibrium in a
utility-target auction.

input : A utility-target auction problem.
output: The egalitarian equilibrium bids b∗i = (vi, ω

∗
i ).

1 Set all bids to (vi, 0). Call the socially optimal outcome o∗.
2 Increase ωi for all bidders uniformly until some bidder i reaches ωi = vi(o

∗) or a CEF
constraint would be violated for some outcome o.

3 Fix the bids of the newly-constrained advertisers.
4 Repeat (2) and (3), lowering only unfixed bids until all bidders are fixed.

This bound is particularly powerful in cases where bidders share value for an outcome

(cases where VCG would make little or no revenue). For example, consider the following

4-bidder, 2-outcome setting:

vA = (1, 0)

vB = (1, 0)

vC = (1, 0)

vD = (0, 2)

In a VCG auction, nobody pays anything. However, a näıve auctioneer might expect the

first outcome to win, with A, B, and C paying a total of $2 (the second-price threat) since

they are beating D.

The CEF constraints quickly imply that a CEF outcome generates at least as much

revenue as the second-price threat:

Claim 6.6. The revenue in any CEF outcome is lower-bounded by the second-price threat.

The proof is given in Appendix C.
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6.5. Utility-Target Auctions for Sponsored Search

Sponsored search advertising demonstrates the benefits of a utility-target auction. The

standard auction in this setting is the generalized second-price (GSP) auction; however, it

(and incentive-compatible VCG mechanisms) lack transparency: payments are complicated

to compute and bidders must trust the auctioneer not to abuse their knowledge when an

auction is repeated. Moreover, its performance may degrade when using more accurate mod-

els of user behavior [Roughgarden and Tardos, 2012] and advertiser value [Hoy et al., 2012].

It can have misaligned incentives when parameters are estimated incorrectly [Wilkens and

Sivan, 2012]. Some of these problems would be solved by a first-price auction; however, Over-

ture’s implementation of GFP demonstrated that such schemes might be highly unstable. A

utility-target auction offers the benefits of a pay-your-bid auction without the instability of

GFP.

6.5.1. The Utility-Target Ad Auction

We illustrate a utility-target auction in the standard model of sponsored search: n advertisers

compete for m ≤ n slots associated with a fixed keyword. An advertiser’s value depends

on the likelihood of a click, called the click-through-rate (CTR) αi,j, and the value v to the

advertiser of a user who clicks. The CTR αi,j is separable into a parameters βi that depends

on the advertiser and αj that depends on the slot, so the expected value to advertiser i

for having her ad shown in slot j is αi,jvi = αjβivi. As is standard, we assume that slots

are naturally ordered from best (j = 1) to worst (j = m), i.e. αj ≥ αj′ for all j < j′.

Without loss of generality, we assume bidders are ordered in decreasing order of bid, i.e.

b1 ≥ b2 ≥ · · · ≥ bn.
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The auctioneer chooses a matching of advertisements to slots and charges an advertiser

a per-click price ppci. For example, in the GFP auction, advertisers submitted bids bi

representing their per-click payment and paid ppci = bi whenever a their ads were clicked.

Similarly, in the standard GSP auction, bidder i is charged according bid of the next highest

bidder.3 To account for differences in CTRs, this quantity is normalized by β so that bidder

i pays a per-click price of ppci = βi
βi+1

bi+1.

In a utility-target auction, bidders submit both their per-click value xi and the utility-

target bid ωi (the utility that they request). The auctioneer picks the assignment j(i)

maximizing ∑
i∈[n]

max(0, αj(i)βixi − ωi)

and charges i so that her expected payment is

E[pi] = max(0, αj(i)βixi − ωi) .

There are at least two interesting ways the utility-target auction can be implemented.

The first implementation charges

ppci = max

(
0, xi −

ωi
αj(i)βi

)

to achieve the desired expected payment. In effect, it uses the utility request ωi to compute

a different per-click bid for each slot. A practical downside to this implementation is that

the payments are still somewhat complicated from the bidders’ perspectives; however, the

3The designers of the GSP auction intended it to inherit the incentive compatibility of the second-price
auction. It does not; however, it has the nice property that bidder i pays the minimum amount required to
win the slot that she received.
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auctioneer could mitigate this problem by publishing CTRs and displaying the per-click

payments in the bidding interface.

An alternative implementation of the utility-target auction pays a rebate of ωi regardless

of whether a click occurred and charges precisely ppci = xi when a click occurs. This auction

is even simpler from the bidders’ perspective; however, when a click does not occur the

auctioneer will be paying the bidder (in expectation the bidder still pays the auctioneer).

This implementation of the utility-target auction is illustrated in Algorithm 6.3.

Such a utility-target auction offers many benefits over existing auction designs like GSP

and VCG. As noted earlier, a first-price auction directly increases transparency and simplicity

from the bidders’ perspective. Even if bidders reveal their true valuation functions vi, the

pay-your-bid property ensures that increasing a reserve price will not increase payments

unless bidders subsequently raise their bids.

The auction also easily generalizes to more complicated bidding languages. Whereas

the welfare and revenue performance of GSP degrades (albeit gracefully) Roughgarden and

Tardos [2012] when considering externalities imposed by the presence of competing ads, the

reasonable (CEF) equilibria of the utility-target auction guarantee good performance. An

open question of Hoy et al. [2012] is to find an auction that performs well in multi-slot settings

when multiple bidders can benefit from clicks on the same ad (e.g. Microsoft and Samsung

both benefit from an ad for a Samsung laptop running Windows) — the utility-target auction

offers good revenue guarantees in these ‘coopetitive’ ad auctions with multiple slots. The

utility-target auction is also less sensitive to estimation errors in the CTRs. As shown

in [Wilkens and Sivan, 2012], incentive-compatibility can be broken because the auctioneer

only knows estimates of the α and β parameters. Informally, the utility-target auction is
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much less sensitive to such errors because the payments need not explicitly depend on the

auctioneer’s estimates.

6.5.2. Utility-Target vs. GFP

Juxtaposing GFP with the utility-target auction illustrates the benefits of a more complex

bidding language. GFP is identical to the utility-target ad auction except that bids contain

only the per-click payment xi and not the utility-target bid ωi. Consequently, a agent’s bid

necessarily offers the same per-click payment regardless of the slot won by the bidder. By

comparison, the utility-target auction permits bids that encode a different per-click payment

depending on the slot in which an ad is shown.

In retrospect, it is easy to see that different per-click bids are important for a good pure-

strategy equilibrium. In GFP, all advertisers who are shown must bid so that βixi is the

same, otherwise some bidder can lower her value of xi without changing her assignment;

however, if this is true, then some bidder can move up to the top slot by bidding xi + ε. In

fact, any bidding language that requires the same per-click payment for all slots could not

have a pure-strategy equilibrium unless the potential benefit of being in the top slot was less

than the effective bid increment required to get there. This necessarily weakens any revenue

guarantees and, worse, implies that the auction cannot differentiate between the winning

bidders to pick the best ordering of ads.

As noted earlier, the existence of a pure-strategy equilibrium is directly related to the

dynamic performance of the auction. Edelman and Ostrovsky [2007] discuss how the lack of

such an equilibrium naturally leads to sawtooth cycling behavior in GFP, as bidders alternate

between increasing their bids to compete for higher slots and decreasing their bids to avoid

overpaying for the slots they have. They also show that this cyclic behavior potentially
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ALGORITHM 6.3: A utility-target auction for search advertising.

input : Bids bi = (xi, ωi).
output: An assignment of advertisements to slots, per-click payments ppci, and

unconditional payments ri.

1 For each bidder i and slot j, compute E[pi,j] = max(αjβixi − ωi, 0);
2 Compute assignment j(i) of advertisements to slots that maximizes

∑
i∈[n] E[pi,j(i)];

3 if E[pi,j(i)] > 0 then
Always pay i the rebate ri = ωi;
Whenever i’s ad is clicked, charge ppci = xi;

else
Do not charge/pay anything to i;

reduced revenue below that of the VCG mechanism. In contrast, Theorem 6.2 shows that

utility-target auctions have pure-strategy equilibria, and Theorem 6.3 shows that revenue at

equilibrium dominates the VCG mechanism; moreover, our dynamic results show that bids

will naturally approach this equilibrium (or the set of such equilibria) as bidders adjust their

utility targets.

6.6. Dynamic Analysis

In this section, we consider the behavior of utility-target auctions in a very simple dy-

namic setting, and under very simple assumptions. We show that a few rules and simple

knowledge of whether one is winning or losing are enough to guarantee the revenue and

welfare bounds from Theorem 6.3.

Following Lemma 6.1, we assume that bidders are quasi-truthful and report bids of the

form (vi, ωi). Bidders compete using the utility-target terms ωi and employ strategies to

optimize their utility.

Winners and Losers. Our dynamic axioms are based on a natural decomposition of bidders

into winners and losers. In a standard first-price auction, the winner is the bidder who gets
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what he wants — the item — and the losers are those who do not get what they want. In

a utility-target auction, a bidder effectively reports her valuation vi and requests that the

auctioneer give her a certain utility ωi. This suggests partitioning bidders into winners and

losers based on whether a bidder gets the utility she requests, giving us the following formal

definition:

Definition 6.5 (Winners and Losers). A winner is a bidder who gets the utility she

requests, i.e. if ob is the outcome of the auction, then i is a winner if and only if

ui(o
b) = vi(o

b)− bi(ob) = ωi .

Any bidder who is not a winner is a loser.

Observation 6.2. Bidder i is a winner if and only if vi(o
b) ≥ ωi and is always a winner

when ωi = 0. When bidder i is a loser, ui(o
b) < ωi.

Note that this definition does not coincide with the standard definition of winners and

losers in a single item auction because a bidder who does not get the item is still a winner

if ωi = 0.

Raising and Lowering Bids. In a dynamic setting, we want to think about how winners and

losers manipulate ωi. In the utility-target auction, the effective bid bi (what bidder i is

actually offering to pay) and the utility-target term ωi move in opposite directions, so when

we talk about raising i’s bid we are talking about decreasing the utility-target term ωi:

Definition 6.6 (Raising and Lowering Bids). We say that bidder i raises her bid from

(vi, ωi) if she chooses a new bid (vi, ω
′
i) where ω′i < ωi, i.e. she raises her bid if she decreases

her utility-target bid.
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Similarly, a bidder who lowers her bid correspondingly increases her utility-target bid

from ωi to ω′i > ωi.

Importantly, our definition of winners and losers shares a natural property with the

standard definition: winners cannot benefit by offering to pay more, and losers cannot benefit

by offering to pay less:

Claim 6.7. Fixing other agents’ bids, a loser cannot increase her utility by raising her

bid. Likewise, a winner cannot increase her utility by lowering her bid.

The claim is straightforward to prove.

Our definition of winners and losers also has a new property that is important:

Claim 6.8. A loser can always raise her bid in a way that weakly increases her utility.

Proof. Suppose i is a loser bidding (vi, ωi) and receiving utility ui < pi. If she raises

her bid to (vi, ui), Lemma 6.1 says that she will receive utility of precisely ui, making her a

winner. �

In our model, bidders locally adjust their bids by ε. To mimic settings where auctions

happen frequently and no two bidders move simultaneously, bid changes are modeled as

asynchronous events. As noted earlier, our model assumes agents bid quasi-truthfully, that

is, they always submit their true valuation functions in their bids. As a result, the history

of the auction is characterized by a sequence of utility-target vectors ω0, . . . .

We assume that 0 ≤ info vi(o) and sup vi(o) <∞, so utility-targets will always lie in the

finite interval [0, sup vi(o)]. Unless a agent’s utility-target hits the boundary of this interval,

all bid changes are made in increments of ε.
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Notions of Convergence. We will show that progressively stronger assumptions imply pro-

gressively stronger convergence guarantees. Our first results show that bids will eventually

be close to the set of CEF (or non-CEF) bids. As noted earlier, the utility-targets ω are

sufficient to characterize bidders’ strategies, so we define C to be the set of all such utility-

target:

Definition 6.7 (The CEF Set). C is the set of all utility-target vectors ω where the

quasi-truthful bids (vi, ωi) produce a cooperatively envy-free outcome.4

The set C is the set of all utility-target vectors which are not CEF, i.e. C = <n+ \ C.

Significantly, C is never empty. In particular, it always contains the 0 vector (0n ∈ C).

Since bidders are continually experimenting with their bids, it is not realistic to expect

bids to explicitly converge to C; rather, they will remain close. For a set of bids ω, let ωε

denote the set of bids that are close to some vector in ω, i.e.

Definition 6.8. Let Sε be the set of all utility-targets ω which are close to some vector

in ω coordinate-wise. Formally,

Sε = {ω | ∃ω′ ∈ S s.t. ||ω − ω′||∞ ≤ ε} .

In particular, we will care about the sets Cε and Cε, the sets representing bids close to

being CEF and close to being not CEF, respectively.

Next we define the convergence of an auction to utility-target bids ω:

4Note that membership in C depends on both the vector ω and the outcome chosen by the auction. This is
because certain utility-target vectors ω will be in C if ties are broken in favor of o∗ but not if ties are broken
in favor of a suboptimal outcome.
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Definition 6.9. An auction converges to a set of utility-targets S if, for any δ > 0, there

exists a sufficiently small bid adjustment parameter ε for which the auction always reaches

a utility-target ω such that all future bids are in Sδ.

Our strongest result wull show that bids converge to the egalitarian equilibrium:

Definition 6.10. The egalitarian equilibrium is the CEF equilibrium which distributes

utility as evenly as possible. Formally, for each equilibrium let u↑ be the vector of bidders’

utilities with its coordinates sorted in increasing order. The egalitarian equilibrium is the

one for which u↑ is lexicographically maximized.

An auction converges to the egalitarian equilibrium ωE if it converges to {ωE}.

6.6.1. Axioms and Results

Our convergence theorems show that progressively stronger assumptions about bidder be-

havior lead to progressively stronger convergence results.

Our first axiom of bidder behavior captures some intuition about how winners and losers

behave. Following Claim 6.7, a winner cannot benefit by raising her bid and a loser cannot

benefit by lowering it, so we suppose that they never do this. Additionally, a loser who is

actively engaged in the auction should raise her bid if it is beneficial. By Claim 6.8 we know

that a loser can always raise her bid in a way that is weakly beneficial, so we suppose that

a loser will always try to raise her bid.

(A1). A losing bidder will raise her bid in an effort to win; a loser will not lower her bid

and a winner will not raise her bid. Formally, if the current utility-target is ω and i

is a loser, then i must raise her bid at some point in the future unless she becomes

a winner through the actions of other bidders.
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Anecdotal evidence suggests that advertisers bidding in an ad auction generally expend

substantial effort to launch advertising campaigns but are much slower to change things once

they appear to work. Our second axiom generalizes this idea by supposing that winners (who,

by definition, get the utility-target they request) view the outcome of the auction as a success

while losers are unhappy with the results:

(A2). A bidder who is losing is more impatient than a bidder who is winning. Formally, if

the current utility-target is ω and a set of bidders L ⊆ [n] are losers, then the next

time bids change it will necessarily be because some loser i ∈ L raised her bid.

Our third axiom is analogous to (A1) but for winners — a winner who is actively engaged

should lower her bid from time to time to see if she can win at a lower bid.

(A3). A winner will try lowering her effective bid to win at a lower price. Specifically, if

a bidder is currently a winner, then she must lower her bid at some point in the

future unless she becomes a loser through the action of another agent. Formally, if

the current utility-targets are ω and i is a winner, then i must lower her bid at some

point in the future unless she becomes a loser through the actions of other bidders.

Our final axiom concerns the relative timing of events. Intuition and anecdotal evidence

suggests that larger bidders who have more at stake tend to invest more heavily in active

bidding strategies. This axiom roughly represents that intuition:

(A4). Between two losers, the bidder with the higher utility-target is more impatient. For-

mally, if the current utility-targets are ω and bidders i and j are both losers, then

i will raise her bid before j if ωi > ωj.

These simple properties of bidder behavior imply the following convergence results.

Proofs follow in Section 6.6.2 and Appendix C.1.
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Theorem 6.9. If losing bidders will only raise their effective bids (A1) and are more

impatient than winning bidders (A2), the auction converges to the set of bids that are coop-

eratively envy-free (i.e. bids will be in Cε).

Theorem 6.10. If winners try to lower their effective bids (A3) and losers try to raise

but not lower their effective bids (A1), the auction converges to the set of bids that are

non-cooperatively envy-free (i.e. bids will be in Cε).

Combining Theorems 6.9 and 6.10 shows that bids will converge to the frontier of the

CEF set. The strict Pareto frontier of this set is the set of CEF equilibrium bids.

Corollary 6.11. If losing bidders will try raising their bids (A1), losers are less patient

than winners (A2), and winners try lowering their bids (A3), the auction converges to the

boundary between CEF and non-CEF bids (bids will be in the set Cε ∪ Cε).

Finally, adding A4 induces convergence to a particular equilibrium:

Theorem 6.12. If losing bidders will raise their effective bids (A1), winning bidders

will try lowering their effective bids (A3), and the most impatient bidder is the losing bidder

bidding for the highest utility-target (A2, A4), then bids will converge to the Egalitarian

envy-free equilibrium.

6.6.2. Convergence Proofs

In this section we give proofs of Theorems 6.9 and 6.10. Theorem 6.12 and omitted proofs

may be found in Appendix C.1. Throughout this section, we assume that there is a single

welfare optimal outcome for clarity of presentation.
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Observation 6.3. Under assumptions A1 and A2, a bidder will only lower her bid if all

bidders are winners.

Lemma 6.13. If all bidders are winners under utility-targets ω, then ω is in the CEF

set C.

Proof. If all bidders are winners, then we know that they are receiving precisely the

utility-target they request when they bid ω. Intuitively, this means that raising bids neces-

sarily implies receiving less utility.

Formally, if bids are bi = (vi, ωi) and the outcome of the auction is ob, then we want to

show that the CEF condition holds for any outcome o. Since all bidders are winners, we know

vi(o
b)−bi(ob) = ωi. Moreover, vi(o)−bi(o) ≤ ωi by definition, so vi(o)−bi(o) ≤ vi(o

b)−bi(ob).

Thus

max
(
(vi(o)− bi(o))− (vi(o

b)− bi(ob)), 0
)

= 0 .

Since ob is the outcome of the auction, we know
∑

i∈[n] bi(o
b) ≥

∑
i∈[n] bi(o) for any

outcome o. Thus, 0 ≤
∑

i∈[n] bi(o
b)− bi(o) and therefore

∑
i∈[n]

max
(
(vi(o)− bi(o))− (vi(o

b)− bi(ob)), 0
)
≤
∑
i∈[n]

bi(o
b)− bi(o)

as desired. �

Since A1 and A2 imply that a agent will only lower her bid from ω if all bidders are

winners, an important corollary is that a bidder will only lower her bid if the current utility-

target vector is in the CEF set C:

Corollary 6.14. Under assumptions A1 and A2, if a agent lowers her bid from ω, then

ω is in the CEF set C.
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A corollary of Claim 6.4 is that any set of CEF bids maximizes welfare, hence this implies

that a agent will only lower her bid if the welfare-optimal outcome is winning:

Corollary 6.15. Under assumptions A1 and A2, a bidder will only lower her bid if a

welfare-optimal outcome o∗ is winning.

Another useful fact about C is that it is leftward-closed (the proof is in the appendix)

and the natural corollary that C is rightward-closed:

Lemma 6.16. If ω is in the CEF set C, then ω − ∆ is in the CEF set C for any

ω ≥ ∆ ≥ 0.

Corollary 6.17. If ω is in the not-CEF set C, then ω + ∆ is in the not-CEF set C for

∆ ≥ 0.

To prove that bids will converge, we first show that bids will not be stuck at arbitrarily

low values:

Lemma 6.18. Suppose the initial vector of utility-targets is ω0. Under properties A1

and A2, the auction will always reach a configuration in which all bidders are winners and

will do so within
∣∣⌈1

ε
ω0
⌉∣∣

1
steps.

We can now prove the our first theorem, that bids will be close to C when A1 and A2

are satisfied.

Proof of Theorem 6.9: Lemma 6.18 implies that all bidders will be winners within a finite

time. Once all bidders are winners, the only way bids will change is if someone lowers her

bid. Thus, after a finite amount of time, we can conclude that either all bidders are winners

or some bidder has lowered her bid.
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Let ω be the vector of utility-targets at any point after the first time all bidders are

winners. If all bidders are still winners, then ω ∈ C by Lemma 6.13. Otherwise, let i

be the most recent agent to lower her bid, increasing the utility-target vector from ω′ to

ω′′ = ω′ + εei. We show that if i raises her bid again then the resulting utility-targets must

be CEF regardless of how bids have changed since i’s raise.

By construction, agents have only raised their bids since i lowered hers, so we can define

∆ = ω′′−ω where ∆ ≥ 0. Corollary 6.14 tells us that ω′ ∈ C. If i raised her bid between ω′′

and ω, then ω ≤ ω′ and Lemma 6.16 tells us that ω ∈ C, so were done. Otherwise, we know

ω′′ ≥ ∆ ≥ 0 and Lemma 6.16 tell us that ω′−∆ ∈ C. Therefore ω = ω′−∆ + εej ∈ Cε. �

To prove Theorem 6.10, we need a lemma similar to Lemma 6.18 showing that the auction

will reach a bid vector that is CEF:

Lemma 6.19. Under properties A1 and A3, as long as there is some outcome o and

bidder j such that vj(o) > vj(o
∗), the auction will always reach a configuration that is not

CEF when ε is sufficiently small. If there is no such outcome o and bidder j, then the auction

may converge to ωj = vj(o
∗) instead.

Proof Sketch of Theorem 6.10: By Lemma 6.19, the auction will typically reach a utility-

target vector in C. Our primary goal is to show that the auction will be in Cε from that

point onwards.

Suppose ω ∈ C. Let ω′ be the most recent utility-targets that were in C and let ω′′ ∈ C

be the utility-targets immediately after ω′. Let i be the bidder who changed her bid between

ω′ and ω′′. Let o be an outcome that violated the CEF constraints at ω′.



183

Consider a bidder j whose bid is higher at ω than at ω′′. Notice that j must be a loser

to raise her bid, roughly vj(o
∗) < ωj. It then follows from the definition of the utility-target

auction that bj(o
∗) essentially did not change from ω′ to ω. Moreover, bj(o) can only have

increased from ω′ to ω, so bj(o) increased more than bj(o
∗) did. Similar logic leads to an

analogous conclusion for bidders whose bids were lower at ω′′ than ω, roughly giving

bj(o)− bj(o∗) ≥ b′j(o)− b′j(o∗)

for each bidder j 6= i. For bidder i, a similar inequality holds accounting for the fact that i

raised her bid from ω′ to ω′′:

bi(o)− bi(o∗) ≥ b′i(o)− b′i(o∗)− ε .

Finally, given that the CEF constraint for o was violated at ω′, these inequalities imply it

must be nearly violated at ω. �

We have now shown that when losing bidders raise their effective bids and winning

bidders lower their effective bids, bids remain close to the frontier of the CEF set C. Adding

in the specific behavior that the first agent to raise their bid will be the losing bidder with

the highest utility-target results in convergence to one specific equilibrium: the egalitarian

equilibrium (Theorem 6.12). The full proof is included in the appendix; we provide a sketch

of it here.

Proof Sketch of Theorem 6.12:

Arrange bidders into levels L1, . . . , Lk in increasing order of the utility each bidder gets

at the egalitarian equilibrium.
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For each level Li+1, bids from all bidders in the level will converge close to the egalitarian

equilibrium once the bids of lower level bidders are sufficiently close to their egalitarian bids.

Thus, beginning with the bidders who get the least utility in equilibrium, and working

on up to the lucky bidders with the most utility, bids will converge close to the egalitarian

outcome. �

6.7. Conclusion and Open Questions

Pay-your-bid auctions — and utility-target auctions in particular — offer many advan-

tages over incentive compatible mechanisms in terms of transparency and simplicity. More-

over, in many complex settings they even appear to generate more revenue.

Our work first shows that the bidding language is important in first-price auction design.

In particular, it is both important and sufficient that bidders can compete in terms of their

final utility. Also, a key feature in a repeated first-price auction is a pure-strategy equilibrium,

something that GFP does not have Edelman et al. [2007]. This is a question of design: the

existence of pure-strategy equilibria may be guaranteed through a carefully crafted bidding

language (e.g. the utility-target auction) that can encode different per-click payments for

different ad slots.

More significantly, when agents compete on utility, our results show that robust perfor-

mance guarantees may be derived using only simple axioms of bidder behavior that merely

require knowledge of whether one is winning or losing. These results are powerful because

they do not require an a priori assumption that the auction is in equilibrium or full infor-

mation about others’ bids.
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Yet, reflection raises a concern about utility-target auctions: why should bidders reveal

their true valuation functions in a repeated auction? We claimed that first-price auctions

were better because the auctioneer could not cheat, but it would seem that quasi-truthfulness

is just as dangerous. In fact, a quasi-truthful pay-your-bid auction is still strongly preferable

to a standard second-price auction: even if the auctioneer knows a bidder’s true valuation

function, it cannot immediately increase the amount of money the bidder pays. By compar-

ison, the auctioneer in a second-price auction might force a bidder to pay her full value in

the second round by increasing the reserve price. The auctioneer is welcome to engage in a

game of chicken or a “negotiation” with the bidder to see if she is willing to raise her bid,

but the pay-your-bid property ensures that final approval still rests with the bidder.

In practice, systems may also be designed to encourage competition on the utility-target

term and thereby recover stability. For example, Overture exacerbated the instability of the

GFP auction by offering an API automating the sawtooth behavior. If an API were offered

to compete on the utility-target term, bidders would likely use the API and stability would

be restored, regardless of whether they were reporting their true valuation functions.

Issues of quasi-truthfulness aside, our work also raises questions about dynamic axioms

of bidder behavior. Our axioms may be simple and natural, but strict adherence to them is

clearly unrealistic. In this vein, many interesting questions are open:

(1) How does the behavior of the auction change with small modifications to the axioms?

For example, we showed that bids would converge to the egalitarian equilibrium

when the bidder with the most to gain raised first. Can we prove convergence to a

different equilibrium by modifying agents’ delays?

(2) Do the performance guarantees still hold if axioms only hold probabilistically or on

average? It seems unlikely that bidder behavior always satisfies any particular set
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of axioms. How do the dynamic guarantees change when axioms only hold most of

the time?

(3) What dynamic axioms do bidders actually obey? An interesting experimental ques-

tion is to determine what axioms are actually satisfied by bidder behavior. For

example, could one experimentally measure bidders’ delays and combine this with

an answer to (1) to predict a particular equilibrium outcome?
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APPENDIX A

Revenue Covering

A.1. Single-item First-Price Auction Lowerbounds

We present a lower bound of 1.15 on the single-item, first-price auction Price of Anarchy.

Consider a setting with one high bidder with a fixed value of 10, and n small bidders

with values drawn from some distribution with value always less than 10. The welfare-

optimal allocation always serves the high bidder. We parameterize the expected utility of

the high bidder as uH . Assume the low bidders will bid such that the highest of their bids

is distributed according to the CDF FL(b) = uH/(10 − b), with a point mass of probability

uH/10 at 0. With this distribution, agent H achieves utility uh for any bid in the range

[0, 10− uh].

The high agent plays a mixed strategy according to the bid CDF BH(b) =
√
b/(10− uH).

The competing bid CDF for each low bidder is Fc(b) = BH(b) ·BL(b)(n−1/n).

With uH = 5.7, solving for the first order conditions in the first price auction tells us

that for any low agent bidding b, v = b+Fc(b)/F
′
c(b); solved numerically it is approximately

v(b) = 15b−0.5b2

5+0.5b
. Solving numerically gives welfare of 8.69; thus the price of anarchy for

welfare is approximately 1.15.

This example is almost tight against the expected cumulative threshold lowerbound T

used in the proof of the value covering lemma (Lemma 3.4). However, the e
e−1

price of

anarchy proof ignores the bid from the agent allocated in the optimal allocation and the

utility of the agents allocated in FPA but not Opt. Both of these quantities are non-zero,
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which leads to the 1.15 figure being reasonably far from the e
e−1

. Bounding these quantities

is a likely required step for improving the e
e−1

bound for single-item settings.

A.2. Framework Proofs

Lemma 3.29 (Restatement). Consider a mechanismM in BNE with induced allocation

and payment rules (x,p), and an agent i with value vi. For any x′ ∈ [0, 1],

vixi(vi) + Ti ≥ e−1
e
vix
′. (3.15)

Proof of Lemma 3.29. If xi(vi) > x′, Ti = 0 and the result follows. Otherwise, note

that by the definition of BNE, i chooses an action which maximizes utility. It follows that

ui(vi) ≥ vixi(αi(z))− pi(αi(z)) =

(
vi −

pi(αi(z))

xi(αi(z))

)
xi(αi(z)) ≥

(
vi −

pi(αi(z))

xi(αi(z))

)
z. (A.1)

Rearranging (A.1) yields

vi −
ui(vi)

z
≤ pi(αi(z))

xi(αi(z))
= τi(z). (A.2)

This bound is meaningful as long as vi − ui(vi)
z
≥ 0, or alternatively z ≥ ui(vi)/vi. It follows

that

vixi(vi) + Ti ≥ vixi(vi) +

∫ x′

xi(vi)

max

(
0, vi −

ui(vi)

z

)
dz

≥ vixi(vi) +

∫ x′

ui(vi)/vi

vi −
ui(vi)

z
dz

= vix
′ + ui(vi) ln

ui(vi)

x′vi
. (A.3)



196

Holding x′vi fixed and minimizing this quantity as a function of ui(vi) yields a minimum

at ui(vi) = x′vi
e

, and at that point assumes value (1−1/e)x′vi. This is precisely the righthand

side of (3.15), implying the lemma. �

A.3. Revenue Extension Proofs

A.3.1. FPA with duplicate bidders

For convenience, let us define shorthand to refer to the virtual surplus provided by agents

with positive and negative virtual values respectively.

Definition A.1. For any BNE s of mechanismM, let Rev+(M) and Rev−(M) be the

virtual surplus from agents with positive and negative virtual values, respectively. Thus,

Rev+(M) =
∑
i

Evi [max(0, φi(vi))xi(vi)] ,

Rev−(M) =
∑
i

Evi [min(0, φi(vi))xi(vi)] .

Recall that our proof of revenue approximation results for the first price auction with

monopoly reserves (Theorem 3.11) only used monopoly reserves to eliminate the impact of

agents with negative virtual values. Thus by the same proof we can show that for any first-

price auction, the revenue from only positive-virtual valued agents approximates the optimal

revenue:

Corollary A.1 (of Theorem 3.11). For any first price auction,

2e

e− 1
Rev+(FPA) ≥ Rev(Opt). (A.4)

Now let us prove our desired result.
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Theorem 3.12 (Restatement). The revenue in any BNE of the first price auction

with k-duplicates (FPAk) and agents with regularly distribution values is at least a k
k−1

2e
e−1

approximation to the revenue of the optimal auction.

For shorthand, we will consider a partition of the agents into groups B1, B2, . . . Bp such

that each group has size at least k and all agents in each group Bi have values drawn from

the distribution Fi.

Next, in any BNE of a first-price auction with k-duplicates, agents of the same group will

play symmetric strategies. This follows from Theorem 3.1 of Chawla and Hartline [2013],

which gives that any two agents when competing against a reserve distribution will behave

identically.

Corollary A.2 (of Theorem 3.1, Chawla and Hartline [2013] ). In any BNE of a first-

price or all-pay auctions with k-duplicates, for any group Bj of agents who have identically

distributed values, all agents in the group play by identical strategies everywhere except on a

measure zero set of values.

We now relate the revenue from each group of bidders to the revenue from a symmetric

second price auction with reserves among only the bidders within the group of duplicates,

allowing us to use the symmetric auction approximation results of Bulow and Klemperer

[1996].

Let SPAR(B) be a second price auction run among agents in group B with a random

reserve drawn according to the distribution R.
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Lemma A.3. There exist reserve value distributions R1, R2 . . . Rp such that in any first

price auction FPAk with k-duplicates,

Rev(FPAk) =
∑

j
Rev(SPARj(Bj)), (A.5)

Rev+(FPAk) =
∑

j
Rev+(SPARj(Bj)). (A.6)

Proof. Fixing the values and actions of bidders outside a group j results in a threshold

value for the highest bidding member of a group, above which he bids high enough to be

allocated and below which he bids less than the amount necessary to be allocated. Let

the distribution of such thresholds be Rj; then a second price auction among the group

members with reserve drawn precisely from Rj will induce exactly the same allocation rule

for all members of the group. By revenue equivalence (Theorem 3.1), the revenue from

members of group j in FPAk will be the same as Rev(SPARj(Bj)). The same argument

holds for Rev+(FPAk) and Rev+(SPARj(Bj)). �

A second-price auction within a group is now a symmetric setting, and thus we can

now use the work of Bulow and Klemperer [1996] to relate (A.5) and (A.6). By Bulow and

Klemperer [1996], if k ≥ 2, Rev(SPARj(Bj)) ≥ k−1
k
Rev+(SPARj(Bj)) and hence:

Rev(FPA) =
∑

j
Rev(SPARj(Bj))

≥
∑

j

k − 1

k
Rev+(SPARj(Bj))

=
k − 1

k
Rev+(FPA).

Combining with Corollary A.1 gives our desired result,
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k

k − 1

2e

e− 1
Rev(FPA) ≥ 2e

e− 1
Rev+(FPA) ≥ Rev(Opt). (A.7)

A.4. Revenue Covering Proofs

A.4.1. GFP

In a randomized mechanism like a position auction, fixing the actions of other agents results

not in a single threshold for winning but a number of thresholds for different allocation

amounts corresponding with the value of each slot. See Figure A.1a for an illustration.

As a result, the generalized first price position auction will not satisfy the same “com-

plete” revenue covering that the normal first-price auction satisfies, but rather it will satisfy

a different version which will be sufficient to prove the same approximation results1. Let

Ti(x
′
i) be the expected threshold up to x′i.

Notably, for any alternate allocation x′, the revenue will cover for each agent the threshold

up to their alternate allocation amount x′. See Figure A.1b for an illustration.

Definition A.2. Position auction A is µ-revenue covered if for any feasible allocation

x′,

µRev(M) ≥
∑
i

T (x′i) (A.8)

Lemma A.4. The generalized first-price position auction is 1-revenue covered.

The proof comes in two steps: first we show that GFP is revenue covered when bid-

ders play deterministic strategies; next, that deterministic revenue-covering implies general

revenue-covering.

1This version of revenue covering can also be used for all of the results for pay-your-bid mechanisms in the
rest of Section 3.5
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1

Bid (d)

T a−i

Bid Allocation Rule

(a) In GFP, when other
agents play actions a,
there is not just one
threshold for allocation,
but a threshold for allo-
cation in each slot.

1

Bid (d)vi

T
a−i

i (x∗i )

x∗i

xi(a
′,a−i)

a′

Bid Allocation Rule

ũi(a
′)

(b) For revenue covering in posi-
tion auctions, T

a−i

i (x′i) is used in
place of x′iT

a−i

i . Note that by
the convexity of T

a−i

i (x′i) in x′i,
T

a−i

i (x′i) ≤ x′iT
a−i

i .

Figure A.1. The threshold in the GFP auction.

Proposition A.5. The generalized first-price position auction is 1-revenue covered in

deterministic strategies.

Proof. Consider the bid-based allocation rule of an agent in GFP, x̃i(bi,b−i). For any

bid bi, if bi would be the jth highest bid, then x̃i(bi,b−i) is the position weight of slot j. So,

x̃i(bi,b−i) is a stair function, with a stair corresponding to each position.

Let T a
i (x′) denote the expected threshold up to x′ when agents play actions a. Denote

by bj and bj−i the jth highest bid from all bidders including and excluding i, respectively;

then

T a
i (αj) =

m∑
i=j

(αi − αi+1)bj−i. (A.9)

The revenue in GFP is then Rev(M(a)) =
∑

j αjb
j ≥

∑
j αjb

j
−i. For any slot j, the

threshold amount for the bidder allocated j in the alternate allocation is less than payment
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of the bidder who won the slot j: αjb
j ≥

∑m
i=j(αi−αi+1)bj−i. Summing over all bidders gives

Rev(M(a)) ≥
∑

i T
a
i (x′i), our desired result. �

We now show that GFP is revenue-covered in the general Bayesian setting.

Proof of Lemma A.4. First, by linearity of expectations we can view the expected

threshold up to x̃i(bi) of an agent as the expectation of their full-information thresholds,

hence

Ti(x̃i(bi)) = bix̃i(bi)−
∫ bi

0

x̃i(d) dd

= Ev−i

[
bix̃i(bi, si(v−i))−

∫ bi

0

x̃i(d, si(v−i)) dd

]
= Ev−i

[
T

s−i(v−i)
i (x̃i(bi, s−i(v−i))

]
. (A.10)

Note that in Equation A.10 the bids are fixed, not the allocation probabilities. Keeping

bids fixed is actually the expected-threshold minimizing way to get allocation x̃i(bi) even if

the bidder is allowed to change her bid in reaction to the actions of other agents. Formally,

Ev−i

[
T

s−i(v−i)
i (x̃i(bi, s−i(v−i)))

]
= min

πi(·) s.t. x̃i(πi)=x̃i(bi)
Ev−i

[
T

s−i(v−i)
i (x̃i(πi(s−i(v−i)), s−i(v−i)))

]
. (A.11)

By first-order conditions, the threshold-minimizing bidding policy to get allocation x̃i(bi)

comes from equating the marginals ∂
∂z
T

s−i(v−i)
i (z) = τ(z), which is the bid required to get

allocation z. Thus, bidding bi is the expected-threshold minimizing way to get allocation

x̃i(bi).
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One alternative bidding policy is to bid to get a fixed probability amount. By the

optimality of fixed bids, we have

Ev−i

[
T

s−i(v−i)
i (x̃i(bi, s−i(v−i)))

]
≤ Ev−i

[
T

s−i(v−i)
i (x̃i(bi))

]
. (A.12)

Combining Equations A.10 and A.12 with Proposition A.5 then gives our desired result,

Ti(x̃i(bi)) ≤ Ev−i

[
T

s−i(v−i)
i (x̃i(bi))

]
≤ Ev−i [µRev(M)]

≤ µRev(M). �

The position auction variant of revenue-covering is weaker than the general revenue

covering (Definition 3.1) condition, and so we also need a stronger value-covering condition.

Lemma A.6 (Value Covering (Position Auctions)). In any BNE of Gfp, for any bidder

i with value vi,

ui(vi) + Ti ≥ e−1
e
x′ivi. (A.13)

The proof is omitted; it proceeds almost identically to Lemma 3.13 but with Ti in place

of Ti and x′ivi in place of vi, and the worst case ui is found at x′ivi/e, not vi/e. Combining

revenue and value covering then gives a welfare approximation:

Theorem A.7. The welfare of any BNE of Gfp is an e
e−1

-approximation to the welfare

of the optimal auction.
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Using an extension from values to virtual values (as in Lemma 3.6) and using reserve

amounts to cover the additional threshold generated by the reserve just gives a revenue

approximation result with monopoly reserves:

Theorem A.8. The revenue in any BNE of the Gfp with regular agents and monopoly

reserves is a 2e
e−1

-approximation to the revenue of the optimal auction.

A.5. All-Pay Auctions

A.5.1. All-Pay Matroid Auction

Lemma 3.31 (Restatement). The all-pay matroid auction is 2-revenue covered.

Proof. The proof for matroid environments differs from the single-item proof only in

the use of Lemma 3.20 to relate revenue to threshold bids. Note that the all-pay matroid

auction selects a basis maximizing the sum of the bids, so Lemma 3.20 still holds. Let x′ be

a feasible allocation and a be an action profile. By the payment semantics of the mechanism,

Rev(M) = Ev

[∑
i
si(vi)

]
≥ Ev

[∑
i
si(vi)xi(v)

]
.

Now let τ bi (v−i) be the threshold bid for i in realized value profile v−i under strategy

profile s (without index i). By Lemma 3.20 implies that

Ev

[∑
i
si(vi)xi(v)

]
≥ Ev

[∑
i
τ bi (v−i)x

′
i

]
=
∑

i
Ev

[
τ bi (v−i)

]
x′i. (A.14)

The rest of the proof proceeds exactly the same as the proof for the single-item case: trans-

lating between threshold bids and equivalent threshold bids (losing the factor of 2), and

finally summing over all agents to achieve the desired result. �
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A.5.2. All-Pay Native Framework

In the proof of Lemma 3.31, we lost a factor of 2 because we needed to translate all-pay bids

into their first-price equivalents. By switching from a first-price centric version of the value

covering and revenue covering framework to one which works directly in terms of all-pay

bids, we can match the welfare results of [Syrgkanis and Tardos, 2013]. We can also derive

a tighter revenue result with duplicates than was possible in the old framework.

First, for each allocation probability z, let τ̃i(z) be the lowest bid i needs to place to get

allocated with probability at least z. Formally, τ̃i(z) = min{b | x̃i(b) ≥ z}. As in the first-

price auction, we can compute the expected value of this threshold bid as T̃i =
∫ 1

0
τ̃i(z) dz. For

the first-price auction, we used the payment semantics to derive a distribution of threshold

bids for which i would be indifferent between all bids less than vi. We can do the same thing

for the all-pay auction and get the following result:

Lemma A.9 (All-Pay Value Covering). For any BNE of an all-pay auction and agent i

with value vi,

ui(vi) + T̃i ≥
vi
2
.

Proof. The proof parallels that of Lemma 3.4 - we lower bound T̃i using the payment

semantics of the all-pay auction, then minimize the lower bound. As with Lemma 3.4, the

deviation-based approach of Syrgkanis and Tardos [2013] also suffices.

Lowerbounding T̃i. Bidder i chooses a best response bid bi which maximizes her utility,

ũi(bi) = vix̃i(bi) − bi. It follows that for any other deviation bid d, ũi(bi) ≥ vix̃i(d) − d.

Rearranging, we get x̃i(d) ≤ ũi(bi)+d
vi

. Since x̃i(d) is the CDF of i’s threshold bid, we can

lower bound T̃i by integrating above the curve ũi(bi)+d
vi

. In other words: T̃i ≥
∫ 1

0
max(0, viz−

ũi(bi)) dz. Call the latter quantity T̃i.
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Optimizing T̃i. Evaluating the integral for T̃i gives T̃i = vi/2 − ũi(bi) + ũi(bi)
2/2vi,

hence ui + ũi(bi) = vi/2 + ũi(bi)
2/2vi. Holding vi fixed and minimizing with respect to ũi(bi)

yields a minimum at ui(bi) = 0, hence ũi(bi) + T̃i ≥ vi/2. Using the facts that ũi(bi) = ui(vi)

and T̃i ≥ T̃i yields the result. �

As in the original framework, value covering characterizes the tradeoff between an agent’s

utility and the difficulty they face getting allocated. Now, however, the latter quantity is

represented by T̃i, which comes from all-pay rather than equivalent first-price bids. In proving

revenue covering, we can therefore skip the translation from all-pay bids to equivalent first-

price bids, yielding revenue covering with µ = 1:

Lemma A.10 (All-Pay Revenue Covering). For any BNE of the all-pay action and any

agent i, the expected revenue is at least T̃i.

Proof. The revenue of the all-pay auction is expected sum of all bids. This is at least

the expected highest bid from all agents except i, which is exactly T̃i. �

Combining Lemmas A.9 and A.10, summing over all agents, and taking expectations in

the manner used to prove Theorem 3.3 yields the welfare bound of Syrgkanis and Tardos

[2013]:

Theorem A.11. The welfare in any BNE of the all-pay auction is at least a 2-approx-

imation to the welfare of the welfare optimal mechanism.

Furthermore, from Lemma A.9, we can derive a virtual value covering result:
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Lemma A.12 (All-Pay Virtual Value Covering). For any BNE of the all-pay auction,

any agent i with value vi such that φi(vi) ≥ 0,

φi(vi)xi(vi) + T̃i ≥
φi(vi)

2
.

For revenue, combining this with the duplicates results in Section 3.4.3 yields:

Theorem A.13. The revenue in any BNE of the all-pay auction with at least k bidders

from each distribution is at least a 6-aproximation to the revenue of the optimal mechanism.

Finally, note that all of the above can be extended to matroids using Lemma 3.20.
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APPENDIX B

Price of Anarchy from Data

Lemma 4.1 (Restatement). For any bidder i with value vi and allocation amount x′i,

ui(vi) +
1

µ
Ti(x

′
i) ≥

1− e−µ

µ
x′ivi.

(Proof sketch). The proof proceeds analogously to the proof of value covering in

Chapter 3 with a small optimization to improve the bound. We first defining a lower bound

T (x) =
∫ x

0
τ(z) dz s.t. τ(z) ≤ τ(z) and hence T (x) ≤ Ti(x).

T (x′i) =

∫ x′i

0

τ(z) dz

=

∫ x′i

0

max(0, v − ui(vi)/z) dz

Evaluating the integral gives T (x′i) = (vix
′
i − ui(vi))− ui(vi)

(
log x′i − log ui(vi)

vi

)
, thus

ui(vi) +
1

µ
T (x′i) = ui(vi) +

1

µ

(
vix
′
i − ui(vi)

(
1 + log x′i − log

ui(vi)

vi

))
and

ui(vi) + 1
µ
T (x′i)

vi
=
ui(vi)

vi
+

1

µ

(
x′i −

ui(vi)

vi

(
1 + log x′i − log

ui(vi)

vi

))
(B.1)
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The right side of Equation (B.1) is convex in ui(vi)
vi

, so we can minimize it by taking

first-order conditions in ui
vi

, giving

0 = 1− 1

µ

(
log x′i − log

ui(vi)

vi

)
.

Thus the right side of Equation (B.1) is minimized with ui(vi)/vi = x′ie
−µ, giving our desired

result,

ui(vi) + 1
µ
T (x′i)

vi
≥ 1− e−µ

µ
x′i.

�

Lemma 4.7 (Restatement). For any µ-revenue covered mechanism M and strategy

profile s with µ ≥ 1, if τ(ε) ≥ (1−1/k)τ(x′) for any feasible allocation amount x′ and ε > 0,

M and s are empirically (1− 1/k)-value covered.

(Proof sketch). First, for bidders with values vi < τ(1), the bound holds even without

the ui term, as

Ti(x
′
i) =

∫ x′i

0

τ(z) dz (B.2)

≥
∫ x′i

0

τ(0) (B.3)

≥ x′i(1− 1/k)τ(1) (B.4)

≥ x′i(1− 1/k)vi (B.5)

Consider bidders with values vi ≥ τ(1). As such a bidder can always choose the bid with

price-per-click τ(1) and get utility vi − τ(1), we know ui(vi) ≥ vi − τ(1). For any allocation
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they choose, we then have

ui(vi) +
1

µ
Ti(x

′
i) ≥ vi − τ(1) +

1

µ

∫ x′i

0

τ(z) dz (B.6)

≥ vi − τ(1) +
1

µ
x′i(1− 1/k)τ(1) (B.7)

≥ vi − τ(1) +
x′i(1− 1/k)τ(1)

max(1, µ)
(B.8)

≥ (vi − τ)

(
1− x′i(1− 1/k)

max(1, µ)

)
+
x′i(1− 1/k)vi

max(1, µ)
(B.9)

≥ x′i(1− 1/k)vi
max(1, µ)

(B.10)

We can improve on the bound by considering the worst-case price-per-click allocation

rule that satisfies τ(1) = 1 and τ(0) = 1− 1
k
, much like in the proof of value covering.

The worst case price-per-click allocation rule x̃, for agents with value v = u+ 1 is

x̃(z) =



1 if 1 ≤ z

u
v−z if 1− 1

k
≤ z ≤ 1

0 if z ≤ 1− 1
k

. (B.11)

Note that this is exactly the price-per-click allocation rule that results in the bidder being

indifferent over all bids in [1− 1
k
, 1], as opposed to the indifference over [0, 1] for the normal

value covering proof (with a little more normalization).
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We can again define T (x′i) to be the threshold based on x̃. We will solve numerically for

the case that x′i = 1 as every other case is strictly worse. So,

T (1) =

∫ 1

0

τ(z) dz (B.12)

= 1−
∫ 1

1−1/k

x̃(y) d y (B.13)

= 1−
∫ 1

1−1/k

u

v − y
d y (B.14)

= 1 + u

(
log(v − 1)− log(v − (1− 1

k
))

)
(B.15)

= 1 + u log
v − 1

v − (1− 1
k
)

(B.16)

Thus, ui + 1
µ
T (1) = u+ 1

µ

(
1 + u log v−1

v−(1− 1
k

)

)
, and

v

ui + 1
µ
T (1)

=
v

u+ 1
µ

(
1 + u log v−1

v−(1− 1
k

)

) (B.17)

In the worst case, u = v − 1, so

v

ui + 1
µ
T (1)

=
v

v − 1 + 1
µ

(
1 + (v − 1) log v−1

v−(1− 1
k

)

) (B.18)

Numerically minimizing for a variety of µ and k values give the results in Table 4.1.

�
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APPENDIX C

The Utility Target Auction

C.1. Selected Proofs

This appendix contains selected proofs that were previously omitted.

C.1.1. CEF Claims

Proof of Claim 6.4: We want to show that
∑

i∈[n] vi(o
∗) ≥

∑
i∈[n] vi(o) for any outcome o and

CEF equilibrium o∗. The envy-freeness constraints give

∑
i∈[n]

max ((vi(o)− bi(o))− (vi(o
∗)− bi(o∗)), 0) ≤

∑
i∈[n]

bi(o
∗)− bi(o)

∑
i∈[n]

(vi(o)− bi(o))− (vi(o
∗)− bi(o∗)) ≤

∑
i∈[n]

bi(o
∗)− bi(o)

∑
i∈[n]

vi(o)− vi(o∗) ≤ 0

as desired. �

Proof of Claim 6.5: Define oi as the outcome that maximizes the welfare of bidders except

i:

oi = arg max
o

∑
j 6=i

vj(o) .

Thus, the VCG price of agent i is
∑

j 6=i vj(o
i)− vj(o∗).
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Now, the envy-freeness constraints give

bi(o
∗) ≥

∑
j

max
(
(vj(o

i)− bj(oi))− (vj(o
∗)− bj(o∗)), 0

)
+ bi(o

∗)−
∑
j

(bj(o
∗)− bj(oi))

bi(o
∗) ≥

∑
j 6=i

(vj(o
i)− bj(oi))− (vj(o

∗)− bj(o∗))

−
∑
j 6=i

(bj(o
∗)− bj(oi)) + bi(o

i)

+ max
(
(vi(o

i)− bi(oi))− (vi(o
∗)− bi(o∗)), 0

)
bi(o

∗) ≥
∑
j 6=i

(vj(o
i)− vj(o∗)) + bi(o

i)

+ max
(
(vi(o

i)− bi(oi))− (vi(o
∗)− bi(o∗)), 0

)
bi(o

∗) ≥
∑
j 6=i

(vj(o
i)− vj(o∗)) .

�

Proof of Claim 6.6: We want to show that

∑
i∈[n]

bi(o
∗) ≥ max

o

∑
i∈[n]

max(vi(o)− vi(o∗), 0) .
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For any outcome o, the envy-freeness constraints give

∑
i∈[n]

max ((vi(o)− bi(o))− (vi(o
∗)− bi(o∗)), 0) ≤

∑
i∈[n]

bi(o
∗)− bi(o)

∑
i∈[n]

max (vi(o)− vi(o∗) + bi(o
∗), bi(o)) ≤

∑
i∈[n]

bi(o
∗)

∑
i∈[n]

max (vi(o)− vi(o∗), 0) ≤
∑
i∈[n]

∑
i∈[n]

bi(o
∗)

as desired. �

C.1.2. Convergence Lemmas

Proof of Lemma 6.16: Let b be the bids at ω and bδ be the bids at ω−δ. Note that Claim 6.4

implies a welfare-optimal outcome o∗ is winning at ω.

First, suppose that all bidders for whom δi > 0 are winners at ω. In this case, vi(o
∗) ≥ ωi

and so vi(o
∗) ≥ ωi − δi and for any outcome o we get

∑
i∈[n]

bδi (o
∗) =

∑
i∈[n]

bi(o
∗) + δi

≥
∑
i∈[n]

bi(o) + δi

≥
∑
i∈[n]

bδi (o) ,

implying o∗ is still winning at bδi . Since vi(o
∗) ≥ ωi− δi, we can conclude that all bidders are

winners, ergo ω − δ ∈ C by Lemma 6.13.
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Now, suppose some bidders in ω may be losers, but that the vector δ has the following

property:

δi ≤ max(ωi − vi(o∗), 0) .

This condition says that only losers will raise their bids, and they will not raise them enough

to affect bi(o
∗).

Our goal is to show

∑
i∈[n]

bδi (o
∗)− bδi (o) ≥

∑
i∈[n]

max
(
(vi(o)− bδi (o))− (vi(o

∗)− bδi (o∗)), 0
)
.

First, we see that bδi (o) = bi(o) as long as vi(o) ≤ vi(o
∗). For any bidder i we have

bδi (o) = max(vi(o)− ωi − δi, 0)

which can only be nonzero if vi(o) > ωi. However, bi(o) can only change if δi > 0, which

requires ωi > vi(o
∗) and thus vi(o) > ωi > vi(o

∗). By construction, this also holds for ωi− δi:

vi(o) > ωi − δi ≥ vi(o
∗) .

Now, when vi(o) > ωi − δi ≥ vi(o
∗), we have

(vi(o)− bδi (o))− (vi(o
∗)− bδi (o∗)) = min(vi(o), ωi − δi)−min(vi(o

∗), ωi − δi)

= ωi − δi − vi(o∗)

≥ 0 .
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Importantly, if ∆(o) is the set of bidders for which bδi (o) 6= bi(o), we may conclude that

∑
i∈[n]

max
(
(vi(o)− bδi (o))− (vi(o

∗)− bδi (o∗)), 0
)

=

=
∑
i 6∈∆(o)

max
(
(vi(o)− bδi (o))− (vi(o

∗)− bδi (o∗)), 0
)

+
∑
i∈∆(o)

(vi(o)− bδi (o))− (vi(o
∗)− bδi (o∗))

and likewise ∑
i∈[n]

max ((vi(o)− bi(o))− (vi(o
∗)− bi(o∗)), 0) =

=
∑
i 6∈∆(o)

max ((vi(o)− bi(o))− (vi(o
∗)− bi(o∗)), 0)

+
∑
i∈∆(o)

(vi(o)− bi(o))− (vi(o
∗)− bi(o∗)) .

The desired CEF condition quickly follows, using the fact that bidders i 6∈ ∆(o) did not

change their bids:

∑
i∈[n]

max
(
(vi(o)− bδi (o))− (vi(o

∗)− bδi (o∗)), 0
)

=
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=
∑
i 6∈∆(o)

max
(
(vi(o)− bδi (o))− (vi(o

∗)− bδi (o∗)), 0
)

+
∑
i∈∆(o)

(vi(o)− bδi (o))− (vi(o
∗)− bδi (o∗))

=
∑
i 6∈∆(o)

max ((vi(o)− bi(o))− (vi(o
∗)− bi(o∗)), 0) +

∑
i∈∆(o)

(vi(o)− bi(o))− (vi(o
∗)− bi(o∗))

+
∑
i∈∆(o)

(bi(o)− bδi (o))− (bi(o
∗)− bδi (o∗))

=
∑
i∈[n]

max ((vi(o)− bi(o))− (vi(o
∗)− bi(o∗)), 0) +

∑
i∈[n]

(bi(o)− bδi (o))− (bi(o
∗)− bδi (o∗))

≤
∑
i∈[n]

(bi(o
∗)− bi(o) +

∑
i∈[n]

(bi(o)− bδi (o))− (bi(o
∗)− bδi (o∗))

=
∑
i∈[n]

bδi (o
∗)− bδi (o)

as desired.

Finally, for general δ, split it as δ = δ1 + δ2 where

δ1
i = min(δi, ωi − vi(o∗)) .

The vector δ1 satisfies the condition δi ≤ max(ωi − vi(o∗), 0), so ω − δ1 ∈ C. Moreover, all

bidders are winners in ω − δ1, so

s− δ1 − δ2 = s− δ ∈ C

as desired. �

Proof of Lemma 6.18: Properties A1 and A3 imply that a bid will only be lowered if there

are no losers. Thus, bids will only be raised (utility-targets decreased) until all bidders are

simultaneously winners. Since any bidder i is always a winner when bidding ωi = 0 and
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bidders never decrease their utility-targets when they are winners (A1), utility-target can be

decreased at most
∣∣⌈1

ε
s
⌉∣∣

1
times before all bidders are winners. Moreover, since losers will

always try to decrease their utility-targets (A1), the auction will never stall in a configuration

where some bidder is a loser. �

Proof of Lemma 6.19: If the auction reaches a vector ω that induces an outcome o 6= o∗,

then ω ∈ C and we are done. Thus, it remains to show that an auction will reach a vector

ω ∈ C even if the outcome is always o∗.

Consider a bidder j. By A1 we know that j will only decrease ωj if she is a loser and

increase ωj if she is a winner. By A3 we can conclude that j will eventually decrease her bid

until ωj ≥ vj(o
∗)− ε, implying bj(o

∗) ≤ ε. Thus,

∑
i∈[n]

bi(o
∗)− bi(o) ≤ nε .

Now, as long as there is some outcome o and bidder j such that vj(o) > vj(o
∗), when ε is

sufficiently small it will be the case that

nε <
∑
i∈[n]

max ((vi(o)− bi(o))− (vi(o
∗)− bi(o∗)), 0)

Unfortunately, this implies

∑
i∈[n]

max ((vi(o)− bi(o))− (vi(o
∗)− bi(o∗)), 0) >

∑
i∈[n]

bi(o
∗)− bi(o) ,

and therefore ω ∈ C.
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If there is no outcome o and bidder j such that vj(o) > vj(o
∗), then by similar logic bid-

ders will increase their utility-targets until precisely ωj = vj(o
∗) (as a result of our restriction

that bidders always bid ωj ≤ supo vj(o
∗)). �

Theorem 6.10 (Restatement). If winners try to lower their effective bids (A3) and losers

try raising but not lowering (A1), bids will eventually remain close to the boundary of the

set of CEF bids or entirely outside it.

Proof of Theorem 6.10: By Lemma 6.19, the auction will eventually reach a utility-target

vector in C or the degenerate case where nobody is paying anything and o∗ is winning. In

the degenerate case, bids converge to a point on the boundary of C, so the theorem is true.

For the standard case, we show that ω ∈ Cε from the first time a bid in C is reached.

If ω ∈ C, we are done, so suppose ω ∈ C. Let ω′ be the most recent utility-targets that

were in C and let ω′′ ∈ C be the utility-targets immediately after ω′. Let i be the bidder who

changed her bid between ω′ and ω′′. Corollary 6.17 implies that i must have raised her bid

between ω′ and ω′′.

First, suppose that the outcome changed from o′ to o′′ when i raised her bid. Since o∗

must be the outcome of any CEF bid, we know that o′′ = o∗ and that the outcome does not

change again before bids reach ω. Define the utility-target vector s̃ with associated bids b̃



219

as follows:

ω̃j =



min(ωi, ω
′
i) j = i

ωj − ε ωj > ω′′j

ωj + ε ωj < ω′j

ωj otherwise.

Let δj = ω̃j − ω′′j . We argue later that i will not increase her utility-target from ω′′i = ω′i + ε,

so |ω̃j − ωj| ≤ ε for all j. Thus, it is sufficient to show that s̃ ∈ C.

Consider a bidder j 6= i and suppose ωj > ω′′j . By definition, we get a simple bound on

j’s bid for o′:

b̃j(o
′) ≥ b′j(o

′)− δj .

We also know that j lowered her bid at some point between ω′′ and ω. Since j would only

increase her utility-target if she were a winner, she must have been a winner at some value

≥ ωj − ε = ω̃j. Thus, ω̃j = ωj − ε ≤ vj(o
∗). We can thus upper-bound her bid for o∗:

b̃j(o
∗) ≤ b′j(o

∗)− δj .

Combining these two bounds and noting that b′′j = b′j for j 6= i gives

b̃j(o
′)− b̃j(o∗) ≥ b′j(o

′)− b′j(o∗) .

For bidders j 6= i with ωj < ω′′j , analogous reasoning based the fact that j must have

been a loser to decrease her utility-target gives

b̃j(o
′)− b̃j(o∗) ≥ b′j(o

′)− b′j(o∗) .
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For bidders j 6= i with ωj = ω′′j , we trivially have

b̃j(o
′)− b̃j(o∗) = b′j(o

′)− b′j(o∗) ,

so it remains to consider bidder i.

For bidder i, we know that decreasing her utility-target from ω′i to ω′′i increased her bid

for o∗ more than it increased her bid for o′. This implies vi(o
′) < vi(o

∗) and ω′′i < vi(o∗).

Consequently, i is a winner with ω′′i at o∗ and will not decrease her utility-target further.

Firstly, this implies that |ω̃i − ωi| ≤ ε. First, suppose ωi > ω′′i . In this case, ωi ≥ ω′i, and

since vi(o
∗) > vi(o

′) we have

b̃i(o
′)− b̃i(o∗) ≥ b′i(o

′)− b′i(o∗) .

Otherwise, i does not change her bid from ω′′ to ω, so ω̃i = ω′i and therefore b̃i = b′i

Thus, for any bidder j we have

b̃j(o
′)− b̃j(o∗) ≥ b′j(o

′)− b′j(o∗) ,

and thus ∑
j∈[n]

b̃j(o
′)−

∑
j∈[n]

b̃j(o
∗) ≥

∑
j∈[n]

b′j(o
′)−

∑
j∈[n]

b′j(o
∗) .

Since o′ was winning at b′j, this implies o∗ cannot be winning under ω̃, and therefore ω̃ ∈ C.

By construction, |ω̃j − ωj| ≤ ε, so this implies ω ∈ Cε.

So far, we showed that ω ∈ Cε as long as the outcome changed when i raised her bid. In

the case where the outcome was already o′ = o∗, we want to analyze the CEF constraints

directly. Since ω′ ∈ C, there is some outcome ow for which the CEF constraints are violated,
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i.e. ∑
i∈[n]

b′i(o
∗)− b′i(ow) <

∑
i∈[n]

max ((vi(o
w)− b′i(ow))− (vi(o

∗)− b′i(o∗)), 0) .

Observing that the outcome does not change from ω′ to ω, the logic from the case where

o′ 6= o∗ gives

b̃j(o
′)− b̃j(o∗) ≥ b′j(o

′)− b′j(o∗)

for any bidder j. It immediately follows that

∑
i∈[n]

b̃i(o
∗)− b̃i(ow) <

∑
i∈[n]

max
(

(vi(o
w)− b̃i(ow))− (vi(o

∗)− b̃i(o∗)), 0
)
,

and so ω̃ ∈ C and ω ∈ Cε. �

C.1.3. Convergence to the Egalitarian Equilibrium

Theorem 6.12 (Restatement). If losing bidders will raise their effective bids (A1), win-

ning bidders will try lowering their effective bids (A3), and the most impatient bidder is the

losing bidder bidding for the highest utility (A2, A4), then bids will converge to the Egalitar-

ian envy-free equilibrium.

Proof of Theorem 6.12: The proof will proceed as follows. We first categorize bidders into

levels based on their utility in the egalitarian outcome. We define upper and lower bounds

on utility-targets as multiples of ε, the amount by which agents change their bids. Then, we

show that if for a given bidder j, the bid of every lower-utility bidder has converged to within

their bounds, the bid of j will also converge to within her bounds - first to at least her lower

bound (Lemma C.4), and then to at most her upper bound (Lemma C.6). Combining these
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via induction gives our final result that the bids of all agents converge near their egalitarian

outcome.

Let o∗ be the egalitarian outcome; let ω∗i be the corresponding utility-target of bidder i.

Let Bb(o) =
∑

i∈[n] bi(o) be the total bid for a given outcome o. Let BX(o) =
∑

j∈LX bj(o),

and B∗X(o) be similarly defined.

First, consider all utility-targets in the egalitarian equlibrium; let zi be the ith smallest

(distinct) utility-target. Let Li be the set of all agents with a utility-target of zi in the

egalitarian equilibrium. We will use L(j) to denote the level of a bidder j.

We will show convergence by showing that there exist functions b−(i) and b+(i) s.t. for

any j ∈ Li, utility-targets converge into and remain in the interval [ω∗j − εb−(i), ω∗j + εb+(i)].

Bidding Bounds. We now precisely define the bounding functions b−(·) and b+(·).

Definition C.1.

b−(i) = 22|L<i| (C.1)

b+(i) = 22|L<i|+|Li| (C.2)

These bounds are given specifically so that for any level k, the sum over upper bounds

in lower levels is at most the lower bound in level k, and the sum over all lower bounds for

lower (or equal) levels is at most the upper bound for level k. Intuitively, we are saying that

lower-level bidders cannot over or under bid enough to make up for bidders in level k.
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Claim C.1.

b−(k) >
k−1∑
i=0

|Li|b+(i) (C.3)

b+(k) >
k∑
i=0

|Li|b−(i) (C.4)

We omit the proof; it follows from manipulation of exponential sums.

Witness outcomes. Recall from Algorithm 6.2 that utility-targets for any given agent

are raised until the CEF constraint for some outcome o is violated. These outcomes have

an important role to play in the egalitarian equilibrium — they are the reason that a bidder

cannot achieve any more utility. We will call them witness outcomes.

Three properties of these witness outcomes are important for us. First, bidder i values

the witness at less than her egalitarian bid, hence she would be ‘losing’ if it was chosen

above the egalitarian winning ad; that all bidders with higher utility value it at at least their

utility-target; and that with the final winning bids, the total bid of each is tied. We define

witness outcomes precisely as follows:

Definition C.2. Outcome ow is a witness outcome for bidder i at the egalitarian utility-

targets ω∗ if its total bid is tied with the egalitarian outcome, i asking for more utility at the

egalitarian equilibrium results in a higher total bid for ow than for the optimal egalitarian

ad and i is the highest-utility bidder to lose if ow wins over o∗.

Recall the intuition behind these outcomes: they are the reason that a bidder cannot

achieve more utility at the egalitarian equilibrium. If there is no witness for a bidder who

must pay something, then the bidder could ask for more utility, and higher utility bidders

could effectively ‘pick up the slack’, resulting in a more egalitarian outcome.
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Claim C.2. At the egalitarian equilibrium, every bidder i s.t. ω∗i < vi(o∗) has at least

one witness.

Proof. We will prove via contradiction. Assume at the CEF egalitarian outcome o∗

bidder i has no witness. Now, let bidder i increase her utility-target by a small enough

ε > 0, that only outcomes that were previously tied with o∗ win over o∗. For each of these

outcomes, there must be a higher utility bidder than i who does not win with the outcome;

otherwise it would be a witness for i. Decrease the utility-targets of the highest utility bidder

not in each of these outcomes by ε. At this point, all outcomes will be tied again — and

we can have the optimal outcome win the tiebreaker via having a higher utility, or assume

that one agent will decrease, then raise their utility-target to ensure that it was the previous

outcome to win. These bids will be CEF, and will be more egalitarian than o∗, as bidder i

achieved more utility, and only higher utility bidders achieved less utility. �

Another important property will be that each outcome is only a witness for bidders of a

single level:

Claim C.3. An outcome is only a witness outcome for bidders of a single level.

This really follows from the definition — bidders in different levels cannot both be the

highest utility bidder to not win with an outcome. More intuitively though, if agents of

different levels were both not in an outcome, and the lower utility bidder had no other witness

outcome, then a more egalitarian outcome would involve increasing his utility-target, and

decreasing the utility-target of the higher utility bidder.

Bidding convergence. We now present the core of our convergence result. This con-

vergence is a two step process for bidders in a given level; after the utility bids of all lower
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level bidders have converged within their bounds, convergence in the given level to at least

the lower bound takes place first, and then bids in the given level will converge to below

their upper bound.

Lemma C.4. Under assumptions A1, A2, A3 and A4, the utility-target of each bidder i

in level Li will converge to at least their lower bounds, ω∗i − ε · b−(i) if for every bidder j′ in

level Li− s.t. i− < i, ωj′ ≤ ω∗j′ + ε · b+(i−).

Proof. Our argument consists of two parts: first, that if a bidder is bidding for utility at

or below her lower bound then she will never reduce her utility-target further. Second, she

will eventually try raising her bid (by A3). These two combined will lead to her eventually

raising her bid to at least the lower bound.

Claim C.5. Under the assumptions of Lemma C.4, no bidder i in level Li with a utility-

target of ωi ≤ ω∗i − ε · b−(i) will lower her utility-target.

We will prove via contradiction. Assume for bidder i that with a utility-target of ωi ≤

ω∗i − ε · b−(i), she wishes to lower her utility-target further. Let o be the winning outcome

with bids ω. As i will only lower her bid if she is losing (A1), ωi > vi(o). We will now try

to derive the contradiction that the total bid for the optimal outcome is at least the total

effective bid for o (B(o∗) > B(o)), hence she must win and would not care to lower her

utility-target.

For i to decrease her utility-target, by A4 she must be the highest utility bidder who is

losing such that ωi > vi(o). By our bound, we know that for every lower utility bidder j′ in

level Li− , ωj′ ≤ ω∗j′ + εb+(i−). Since o∗ is the optimal winning outcome and o the currently

winning outcome, B∗(o∗) ≥ B∗(o) and B(o∗) ≤ B(o).
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In the egalitarian outcome, every bidder i receives the utility she bids for; hence b∗i (o
∗) =

vi(o∗) − ω∗i . By our assumption on the utility-target bounds, for all bidders j′ ∈ L<i+1,

b∗j′(o
∗)− bj′(o∗) ≤ εb+(L(j′)).

Consider a bidder j′ in a lower level than i and first, is requesting more utility relative to

the egalitarian outcome, specifically that ωj′ > ω∗j′ . Hence, we will have 0 ≥ bj′(o
∗)−b∗j′(o∗) ≥

−(ωj′ − ω∗j′) and 0 ≥ bj′(o)− b∗j′(o) ≥ −(ωj′ − ω∗j′). Hence,

(bj′(o
∗)− b∗j′(o∗))− (bj′(o)− b∗j′(o)) ≥ −(ωj′ − ω∗j′) (C.5)

≥ −b+(L(j′)). (C.6)

Consider the case that ωj′ ≤ ω∗j′ , that j′ is requesting less utility than in the egalitarian

outcome. Then bj′(o
∗)− b∗j′(o∗) = −(ωj′−ω∗j′) ≥ 0, and bj′(o)− b∗j′(o) ≤ −(ωj′−ω∗j′). Hence,

(bj′(o
∗)− b∗j′(o∗))− (bj′(o)− b∗j′(o)) ≥ 0. (C.7)

Summing over all lower-level bidders via Equations (C.6) and (C.7) gives (B<i(o
∗) −

B∗<i(o
∗))− (B<i(o)−B∗<i(o)) ≥ −

∑
i′<L(i) b

+(i′) and hence by Claim C.1,

(B<i(o
∗)−B∗<i(o∗))− (B<i(o)−B∗<i(o)) > −b−(i). (C.8)

Now, consider a bidder j′ in the same or a higher level than i. If j′ is overbidding and

not winning in outcome o with bids b, then she would have decreased her utility-target faster

than i. She could however be overbidding and winning in o; in which case the decrease in bids

for o∗ must be bounded by the decrease for o, hence: (bj′(o
∗)− b∗j′(o∗))− (bj′(o)− b∗j′(o)) ≥ 0.

If she is requesting less utility, o∗ will see the full increase in bid while o may not. Denote



227

the total bid of all bidders aside from i in the same or higher level as i as B≥i\i(o). Then,

summing over all such bidders gives

B≥i\i(o
∗)−B∗≥i\i(o∗))− (B≥i\i(o)−B∗≥i\i(o)) ≥ 0. (C.9)

Our original assumption on i gives (bi(o
∗)− b∗i (o∗))− (bi(o)− b∗i (o)) ≤ b−(i). Now, taking

the sum over this and equations (C.8) and (C.9) gives (B(o∗)−B∗(o∗))− (B(o)−B∗(o)) >

−b+(L(j)) + b+(L(j)) = 0. By our assumption that o∗ is the egalitarian winning outcome,

we have B∗(o∗)−B∗(o) ≥ 0. Adding these yields

B(o∗)−B(o) > 0. (C.10)

This is in violation of our assumption that o wins with bids b. Hence, no such bidder i can

ever wish to lower her utility-target past the lower bound when all lower-level agents have

bids within their upper bounds. By Assumption A3, she will eventually try and lower her

bid when winning, hence her bid will converge above her lower bound. �

Lemma C.6. Under assumptions A1, A2, A3 and A4, the utility-target ωi of each bidder

i in level Li will converge to at most the upper bound, ω∗i + ε · b+(i) if for every bidder j′ in

level Li− s.t. i− ≤ i, ωj′ ≥ s∗j′ − ε · b−(i−).

Proof. By Assumptions A1, A2 and Observation 6.3, a bidder will only request more

utility from a set of bids b with winning outcome o if all other bidders are winning with bids

b, and by Lemma 6.13, b must be CEF.
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Our proof will proceed by showing that in any such o, ωi < ω∗i + ε · b+(i), and hence her

utility-target must stay below ω∗i + ε · b+(i) in winning outcomes. Furthermore, by Theorem

6.9 bids will become CEF; hence i will be forced to decrease her utility-target.

By Claim C.2, there is a witness outcome ow which includes every bidder j′ in a strictly

higher level i+ than i. We will now show that if all other agents are winning with the egal-

itarian winning outcome, then i’s utility-target must be below her upper bound, otherwise

the witness outcome ow would win over o∗.

By Definition C.2, B∗(ow) = B∗(o∗). Consider the quantity B(o∗)−B∗(o∗), and break it

into sums over bidders in levels at or below bidder i, i and bidders in levels above i:

(B(o∗)−B∗(o∗)) =(B≤i\i(o
∗)−B∗≤i\i(o∗))

+ (bi(o
∗)− b∗i (o∗))

+ (B>i(o
∗)−B∗>i(o∗))

We will now proceed by separately considering bidders in higher and lower levels than

bidder i. We will bound the change in bids from each, and see that there is no way for bidder

i to ask for utility above her upper bound and still be in the winning outcome.

Higher-level bidders. By properties of witness sets, any such bidder j′ must be winning

in the witness outcome at both the egalitarian bids and the current bids, hence bj′(o
w) −

b∗j′(o
w) = −(ωj′ − ω∗j′). Since we know that at the egalitarian bids, such a bidder must

be winning in the egalitarian outcome, bj′(o
∗) − b∗j′(o∗) = −(ωj′ − ω∗j′) ≤ bj′(o

w) − b∗j′(ow).

Summing over all such bidders yields

(B>i(o
∗)−B∗>i(o∗))− (B>i(o

w)−B∗>i(ow)) ≤ 0. (C.11)
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Lower-level bidders. By our initial assumption that bidding has converged above

lower bounds for these bidders, for any bidder j′ in L≤i, ωj′ ≥ ω∗j′ − εb−(L(j′)), and hence

bj′(o
∗) ≤ b∗j′(o

∗) + εb−(L(j′)) and bj′(o
w) ≤ b∗j′(o

w) + εb−(L(j′)).

Recall that all bids b∗j′(o
∗) and bj′(o

∗) are winning by assumption — since o∗ is the

egalitarian outcome, and no agent wishes to decrease their utility-target in the current bids. If

for some bidder j′, vj′(o
w) ≥ vj′(o

∗), then (bj′(o
w)−b∗j′(ow)) = (bj′(o

∗)−b∗j′(o∗)) = −(ωj′−ω∗j′).

Consider then the case that vj′(ow) < vj′(o∗); that is, that j′ values the witness o less

than the egalitarian outcome. We will consider two cases: that her utility-target is lower or

higher than her egalitarian utility-target respectively.

(ωj′ < ω∗j′) If the bidder j′ bids for less utility than in the egalitarian outcome, then that increase

in effective bid will be bounded by the increase in the bid for the egalitarian outcome.

That is, we have bj′(o
w)− b∗j′(ow) = max(vj′(o

w), ωj′)−ωj′ −max(vj′(o
w), ω∗j′) +ω∗j′ ,

and hence bj′(o
w)− b∗j′(ow) = −(ωj′ − ω∗j′) + (max(vj′(o

w), ωj′)−max(vj′(o
w), ω∗j′)).

As bj′(o
∗)− b∗j′(o∗) = −(ωj′ − ω∗j′), we then have:

0 ≤ bj′(o
w)− b∗j′(ow) ≤ bj′(o

∗)− b∗j′(o∗) = −(ωj′ − ω∗j′). (C.12)

Furthermore, since ωj′ ≥ ω∗j′ − εb−(L(j′)) by assumption, we have:

0 ≤ bj′(o
w)− b∗j′(ow) ≤ bj′(o

∗)− b∗j′(o∗) ≤ εb−(L(j′)) (C.13)

and

0 ≤ (bj′(o
∗)− b∗j′(o∗))− (bj′(o

w)− b∗j′(ow)) ≤ εb−(L(j′)). (C.14)

(ωj′ ≥ ω∗j′) If bidder j′ instead is bidding for at least as much utility as in the egalitarian

outcome, the decrease in total bid is bounded by the change in bids for the egalitarian
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outcome, hence the change in utility-targets will be between bj′(o
∗) − b∗j′(o

∗) =

ω∗j′ − ωj′ and 0. Hence,

bj′(o
∗)− b∗j′(o∗) ≤ bj′(o

w)− b∗j′(ow) ≤ 0 (C.15)

and

− (ωj′ − ω∗j′) ≤ (bj′(o
∗)− b∗j′(o∗))− (bj′(o

w)− b∗j(ow)) ≤ 0. (C.16)

We now have upper bounds on −(ωj′ − ω∗j′) ≤ (bj′(o
∗)− b∗j′(o∗))− (bj′(o

w)− b∗j(ow)) for

all lower-level bidders. Taking the sum across all members of L≤i via Equations (C.14) and

(C.16) gives:

∑
j′∈L≤i

(bj′(o
∗)− b∗j′(o∗))− (bj′(o

w)− b∗j′(ow)) ≤
∑
j′∈L≤i

εb−(L(j′)) (C.17)

Rearranging and noting that
∑

j′∈L≤i εb
−(L(j′)) < b+(i) by Claim C.1 gives

(B≤i\i(o
∗)−B∗≤i\i(o∗))− (B≤i\i(o

w)−B∗≤i\i(ow)) < εb+(i). (C.18)

Summing over equations (C.18) and (C.11) gives us:

(B≤i\i(o
∗)−B∗≤i\i(o∗))− (B≤i\i(o

w)−B∗≤i\i(ow))

+ (B>i(o
∗)−B∗>i(o∗))− (B>i(o

w)−B∗>i(ow)) < εb+(i). (C.19)
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By assumption, (bi(o
∗)−b∗i (o∗)) = −(ωi−ω∗i ) ≤ −εb+(i) and bi(o

w) = b∗i (o
w)) = 0. Thus,

(bi(o
∗)− b∗i (o∗))− (bi(o

w)− bii∗(ow)) ≤ −εb+(i). Adding this to (C.19) gives:

(B(o∗)−B∗(o∗))− (B(ow)−B∗(ow)) < εb+(i)− εb+(i) = 0 (C.20)

By our initial assumption that ow is a witness outcome, B∗(o∗) − B∗(ow) = 0. Adding this

to the above equation yields

B(o∗) < B(ow) (C.21)

This contradicts our assumption that o∗ is a winning set with bids b(·). Hence, i will be

forced to decrease her utility-target to at most ω∗i + εb+(i) before the egalitarian winning set

o∗ is winning again. �

Combining Lemma C.4 and Lemma C.6 gives us convergence of each bidder in each level

i to within their bounds as soon as lower level bidders have all converged. It follows then

from straightforward induction on levels that all bids converge to within their bounds. �
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APPENDIX D

Risk Averse bidders

D.1. Proofs from Section 5.3

Lemma 5.4 (Restatement). A mechanism with two-price allocation rule x = xval − xC is

BIC if and only if for all v and v+ such that v < v+ ≤ v + C,

xval(v)

C
≤ xC(v+)− xC(v)

v+ − v
≤ x(v+)

C
. (5.1)

Proof of Lemma 5.4. Consider an agent and fix two possible values of the agent v ≤

v+ ≤ v+C. The utility for truthtelling with value v is C ·xC(v) in a two-price auction. The

utility for misreporting v+ from value v is xval(v
+) · (v − v+) + xC(v+) · (C + v − v+): when

the mechanism sells and charges v+, the agent’s utility is v − v+; when the mechanism sells

and charges v+ − C, her utility is UC(C + v − v+) = C + v − v+ (since v < v+). Likewise,

the utility for misreporting v from true value v+ is xval(v) · (v+ − v) + xC(v) · C. Note that

here when the mechanism charges v − C, the utility of the agent is C because the wealth

C − v+ v+ is more than C; when the mechanism charges v, her utility is v+− v because we

assumed v+ ≤ v + C.
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An agent with valuation v (or v+) would not misreport v+ (or v) if and only if

xC(v) · C ≥ xval(v
+) · (v − v+) + xC(v+) · (C + v − v+); (D.1)

xC(v+) · C ≥ xval(v) · (v+ − v) + xC(v) · C. (D.2)

Now the right side of (5.1) follows from (D.1) and the left side follows from (D.2).

When v+ > v+C, the agent with value v certainly has no incentive to misreport v+, since

any outcome results in non-positive utility. Alternatively, the agent with value v+ will derive

utility C · x(v) from misreporting v and thus will misreport if and only if x(v) > xC(v+).

Substituting v + C for v+ in equation (5.1) gives x(v) ≤ xC(v + C), and taking this for

intermediate points between v + C and v+ gives monotonicity of xC(v) over [v + C, v+].

Combining these gives x(v) ≤ xC(v + C) ≤ xC(v) and hence v+ will not misreport v. �

Corollary 5.5 (Restatement): The allocation rules xC and xval of a BIC two-priced

mechanism satisfies that for all v < v+,

∫ v+

v

xval(z)

C
dz ≤ xC(v+)− xC(v) ≤

∫ v+

v

x(z)

C
dz. (5.4)

Proof of Corollary 5.5. Without loss of generality, suppose v+ ≤ v+C (the state-

ment then follows for higher v+ by induction). Define function

x̄C(z) = xC(v) +

∫ z

v

supy′∈[v,y] xval(y
′)

C
dy, ∀z ∈ [v, v+],

then x̄C(z) ≥ xC(v) +
∫ z
v
xval(y)
C

dy and hence
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∫ z

v

xval(y)

C
dy ≤ x̄C(z)− xC(v).

By the argument in the proof of Lemma 5.9,part 2, we have x̄C(z) ≤ xC(z), for all z. This

gives the left side of (5.4). The other side is proven similarly. �

D.2. Proofs from Section 5.4

Definition 5.2 (Restatement). We define x̄ = x̄C + x̄val as follows:

(1) x̄val(v) = xval(v);

(2) Let r(v) be 1
C

supz≤v xval(z), and let

x̄C(v) =


∫ v

0
r(y) dy, v ∈ [0, C];

xC(v), v > C.
(5.5)

Lemma 5.9 (Restatement).

(1) On v ∈ [0, C], x̄C(·) is a convex, monotone increasing function.

(2) On all v, x̄C(v) ≤ xC(v).

(3) The incentive constraint from the left-hand side of (5.4) holds for x̄C:
∫ v+
v

x̄val(z)dz ≤

x̄C(v+)− x̄C(v) for all v < v+.

(4) On all v, x̄C(v) ≤ xC(v), x̄(v) ≤ x(v), and p̄(v) ≥ p(v).

Proof of Lemma 5.9.

(1) On [0, C], x̄C(v) is the integral of a monotone, non-negative function.

(2) The statement holds directly from the definition for v > C; therefore, fix v ≤ C in

the argument below.
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Since r(v) is an increasing function of v, it is Riemann integrable (and not only

Lebesgue integrable).

Fixing v, we show that, given any ε ≤ 0, x̄C(v) ≤ xC(v) + ε. Fix an integer

N > v/ε, and let ∆ be v/N < ε. Consider Riemann sum S =
∑N

j=1 ∆ · r(ξj), where

each ξj is an arbitrary point in [(j − 1)∆, j∆].1 We will also denote by S(k) =∑k
j=1 ∆ ·r(ξj), k ≤ N , the partial sum of the first k terms. Since x̄C(v) = lim∆→0 S,

it suffices to show that for all ∆ < ε, S ≤ xC(v)+ ε. In order to show this, we define

a piecewise linear function y. On [0,∆], y is 0, and then on interval [j∆, (j + 1)∆],

y grows at a rate r((j − 1)∆). Intuitively, y “lags behind” xC by an interval ∆ and

we will show it lower bounds xC and upper bounds S + ε. Note that since r is an

increasing function, y is convex.

We first show y(v) ≤ xC(v). We will show by induction on j that y(z) ≤ xC(z)

for all z ∈ [0, j∆]. Since y is 0 on [0,∆], the base case j = 1 is trivial. Suppose

we have shown y(z) ≤ xC(z) for all z ∈ [0, (j − 1)∆], let us consider the interval

[(j − 1)∆, j∆]. Let z∗ be arg maxz≤(j−1)∆ xval(z).2 By the induction hypothesis,

y(z∗) ≤ xC(z∗). Recall that z∗ ≤ z ≤ C. By the BIC condition (5.2), for all z ≥ z∗,

xC(z) ≥ xC(z∗) +
xval(z

∗)

C
(z − z∗).

1Obviously S depends both on ∆ and the choice of ξj ’s. For cleanness of notation we omit this dependence
and do not write S∆,ξ.
2Here we assumed that supz<(j−1)∆ xval(z) can be attained by z∗, which is certainly the case when xval is
continuous. It is straightforward to see though that we do not need such an assumption. It suffices to choose
z∗ such that xval(z

∗) is close enough to r((j − 1)∆). The proof goes almost without change, except with an
even smaller choice of ∆.
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On the other hand, by definition, r is constant on [z∗, z], and the derivative of y is

no larger than r(z∗) on [z∗, z]. Hence for all z ≤ j∆,

y(z) ≤ y(z∗) +
xval(z

∗)

C
(z − z∗)

≤ xC(z∗) +
xval(z

∗)

C
(z − z∗) ≤ xC(z).

This completes the induction and shows y(z) ≤ xC(v) for all z ∈ [0, v].

Now we show S ≤ y(v) + ε. Note that since r(z) ≤ 1 for all z, S ≤ S(N −

1) + ∆ < S(N − 1) + ε. We will show by induction that S(N − 1) ≤ y(v). Our

induction hypothesis is S(j − 1) ≤ y(j∆). The base case for j = 1 is obvious as

S(0) = y(∆) = 0.

S(j) = S(j − 1) + ∆ · r(ξj)

≤ y(j) + ∆ · r(j∆)

= y(j + 1).

In the inequality we used the induction hypothesis and the monotonicity of r. The

last equality is by definition of y.

This completes the proof of part 2.

(3) For v ≤ v+ ≤ C, by definition of x̄C ,

x̄C(v+)− x̄C(v) =

∫ v+

v

r(z) dz ≥
∫ v+

v

xval(z)

C
dz.
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For C ≤ v ≤ v+, x̄C and x̄val are equal to x̄C and x̄val on [v, v+], and the inequality

follows from Corollary 5.5. For v ≤ C and v+ ≥ C, we have

x̄C(v+)− x̄C(v) = [x̄C(v+)− x̄C(C)] + [x̄C(C)− x̄C(v)]

≥
∫ v+

C

xval(z)

C
dz +

∫ C

v

xval(z)

C
dz

=

∫ v+

v

xval(z)

C
dz.

(4) The first part, x̄C(v) ≤ xC(v), is from part 2 of the lemma and the definition of

x̄C(v) = xC(v) on v > C. The second part, x̄(v) ≤ x(v), follows from the definition

of x̄val(v) = xval(v), the first part, and the definition of x(v) = xval(v) + xC(v).

The third part, p̄(v) ≥ p(v), follows because lowering xC(v) to x̄C(v) on v ∈ [0, C]

foregoes payment of v − C which is non-positive (for v ∈ [0, C]). �

D.3. Proofs from Section 5.5

Theorem 5.11 (Restatement). An allocation rule x and payment rule p are the BNE of

a one-priced mechanism if and only if (a) x is monotone non-decreasing and (b) if p(v) ≥

pVC(v) for all v then p = pC is defined as

pC(0) = 0, (5.10)

pC(v) = max

(
pVC(v), sup

v−<v

{
pC(v−) + (pRN(v)− pRN(v−))

})
. (5.11)

Moreover, if x is strictly increasing then p(v) ≥ pVC(v) for all v and p = pC is the unique

equilibrium payment rule.
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The proof follows from a few basic conditions. First, with strictly monotone allocation

rule x, the payment upon winning must be at least v−C; otherwise, a bidder would wish to

overbid and see a higher chance of winning, with no decrease in utility on winning. Second,

when the payment on winning is strictly greater than v − C, the bidder is effectively risk-

neutral and the risk-neutral payment identity must hold locally. Third, when an agent is

paying exactly v − C on winning, they are capacitated when considering underbidding, but

risk-neutral when considering overbidding. As a result, at such a point, pC must be at least

as steep as pRN, i.e., if d
dv
pRN(v) > dpVC

dv
(v), pC will increase above pVC, at which point it

must follow the behavior of pRN.

Theorem 5.11 follows from the following three lemmas which show the necessity of mono-

tonicity, the (partial) necessity of the payment identity, and then the sufficiency of mono-

tonicity and the payment identity.

Lemma D.1. If x and p are the BNE of a one-priced mechanism, then x is monotone

non-decreasing.

Lemma D.1 shows that monotonicity of the allocation rule is necessary for BNE in a

one-priced mechanism. Compare this to Example 5.1 where we exhibited a non-one-priced

mechanisms that was not monotone. Because the utilities may be capacitated, the standard

risk-neutral monotonicity argument; which involves writing the IC constraints for a high-

valued agent reporting low and a low-valued agent reporting high, adding, and canceling

payments; does not work.

Lemma D.2. If x and p are the BNE of a one-priced mechanism and p(v) ≥ pVC(v) for

all v, then p = pC (as defined in Theorem 5.11); moreover, if x is strictly monotone then

p(v) ≥ pVC(v) for all v.
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From Lemma D.2 we see that one-priced mechanisms almost have a payment identity.

It is obvious that a payment identity does not generically hold as a capacitated agent with

value v is indifferent between payments less than v−C; therefore, the agent’s incentives does

not pin down the payment rule if the payment rule ever results in a wealth for the agent of

more than C. Nonetheless, the lemma shows that this is the only thing that could lead to a

multiplicity of payment rules. Additionally, the lemma shows that if x is strictly monotone,

then these sorts of payment rules cannot arise.

Lemma D.3. If allocation rule x is monotone non-decreasing and payment rule p = pC

(as defined in Theorem 5.11), then they are the Bayes-Nash equilibrium of a one-priced

mechanism.

The following claim and notational definition will be used throughout the proofs below.

Claim D.4. Compared to the wealth of type v on truthtelling, when type v+ > v mis-

reports v she obtains strictly more wealth (and is more capacity constrained) and when type

v− < v misreports v she obtains strictly less wealth (and is less capacity constrained) and if

p(v) ≥ pVC(v) then type v− is strictly risk neutral on reporting v.

Definition D.1. Denote the utility for type v misreporting v′ for the same implicit

allocation and payment rules by uC(v, v′) and uRN(v, v′) for risk-averse and risk-neutral

agents, respectively.

Proof of Lemma D.1. We prove via contradiction. Assume that x is not monotone,

and hence there is a pair of values, v− < v+, for which x(v−) > x(v+). We will consider this

in three cases: (1) when a type of v− is capacitated upon truthfully reporting and winning,

and when a type of v− is strictly in the risk-neutral section of her utility upon winning and
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a type of v+ is either in the (2) capacitated or (3) strictly risk-neutral section of her utility

upon winning.

(1) (v− capacitated). If v− is capacitated upon winning, then v+ will also be capacitated

upon winning and misreporting v− (Claim D.4). A capacitated agent is already

receiving the highest utility possible upon winning. Therefore, v+ strictly prefers

misreporting v− as such a report (strictly) increases probability of winning and

(weakly) increases utility from winning.

(2) (v− risk-neutral, v+ capacitated). We split this case into two subcases depending

on whether the agent with type v− is capacitated with misreport v+.

(a) (v− capacitated when misreporting v+). As the truthtelling v+ type is also

capacitated (by assumption of this case), the utilities of these two scenarios are

the same, i.e.,

uC(v−, v+) = uC(v+, v+). (D.3)

Since type v− truthfully reporting v− is strictly uncapacitated, if her value was

increased she would feel a change in utility (for the same report); therefore,

type v+ reporting v− has strictly more utility (Claim D.4), i.e.,

uC(v+, v−) > uC(v−, v−). (D.4)

Combining (D.3) and (D.4) we arrive at the contradiction that type v+ strictly

prefers to report v−, i.e.,

uC(v+, v−) > uC(v+, v+).
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(b) (v− risk-neutral when misreporting v+). First, it cannot be that the bidder of

type v+ is capacitated for both reports v+ and v− as, otherwise, misreporting v−

gives the same utility upon winning but strictly higher probability of winning.

Therefore, both types are risk neutral when reporting v−. Type v− is risk-

neutral for both reports so she feels the discount in payment from reporting

v+ instead of v− linearly; type v+ feels the discount less as she is capacitated

at v+. On the other hand, v+ has a higher value for service and therefore

feels the higher service probability from reporting v− over v+ more than v−.

Consequently, if v− prefers reporting v− to v+, then so must v+ (strictly).

(3) (v− risk-neutral, v+ risk-neutral). First, note that the price upon winning must

be higher when reporting v− than v+, i.e., p(v−)/x(v−) > p(v+)/x(v+); otherwise

a bidder of type v+ would always prefer to report v− for the higher utility upon

winning and higher chance of winning. Thus, a bidder of type v+ must be risk-

neutral upon underreporting v− and winning; furthermore, risk-neutrality of v+ for

reporting v+ implies the risk-neutrality of v− for reporting v+ (Claim D.4). As

both v+ and v− are risk-neutral for reporting either of v− or v+, the standard

monotonicity argument for risk-neutral agents applies.

Thus, for x to be in BNE it must be monotone non-decreasing. �

Proof of Lemma D.2. First we show that if x is strictly monotone then p(v) ≥ pVC(v)

for all v. If p(v) < pVC(v) then type v on truthtelling obtains a wealth w strictly larger than

C. Type v− = v − ε, for ε ∈ (0, w − C), would also be capacitated when reporting v;

therefore, by strict monotonicity of x such a over-report strictly increases her utility and

BIC is violated.
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The following two claims give the necessary condition.

pC(v) ≥ pC(v−) + (pRN(v)− pRN(v−)), ∀v− < v (D.5)

pC(v) ≤ sup
v−<v

{
pC(v−) + (pRN(v)− pRN(v−))

}
, ∀v s.t. pC(v) > pVC(v). (D.6)

Equation (D.5) is easy to show. Since pC(v) ≥ pVC(v), the wealth of any type v− when

winning is at most C, and strictly smaller than C if overbidding. In other words, when

overbidding, a bidder only uses the linear part of her utility function and therefore can be

seen as risk neutral. Equation (D.5) then follows directly from the standard argument for

risk neutral agents.3

Equation (D.6) would be easy to show if pC is continuous: for all v where pC(v) > pVC(v),

there is a neighborhood (v − ε, v] such that deviating on this interval only incurs the linear

part of the utility function and the agent is effectively risk neutral. We give the following

general proof that deals with discontinuity and includes continuous cases as well.

To show (D.6), it suffices to show that, for each v where pC(v) > pVC(v), for any ε > 0,

pC(v) < pC(v−) + (pRN(v)− pRN(v−) + ε for some v− < v. Consider any v− > v − ε
2
. Since

pC(v−) ≥ pVC(v−) = (v− − C)x(v−) > (v − ε
2
− C)x(v−), the utility for v to misreport v−,

i.e., uC(v, v−) is not much smaller than if the agent is risk neutral:

uRN(v, v−)− uC(v, v−) <
ε

2
x(v−).

3For a risk neutral agent, the risk neutral payment maintains the least difference in payment to prevent all
types from overbidding.



243

The following derivation, starting with the BIC condition, gives the desired bound:

0 ≤ uC(v, v)− UC(v, v−) < UC(v, v)− uRN(v, v−) +
ε

2
x(v−)

= (x(v)v − pC(v))− (x(v−)v − pC(v−)) +
ε

2
x(v−)

= (x(v)− x(v−))v − (pC(v)− pC(v−)) +
ε

2
x(v−)

≤ pRN(v)− pRN(v−) + (v − v−)x(v)− (pC(v)− pC(v−)) +
ε

2
x(v−)

≤ pRN(v)− pRN(v−)− (pC(v)− pC(v−)) + ε.

The first equality holds because pC(v) > pVC(v); the second to last inequality uses the

definition of risk neutral payments (Theorem 5.1, part 2), and the last holds because x(v−) <

x(v) ≤ 1. �

Proof of Lemma D.3. The proof proceeds in three steps. First, we show that an

agent with value v does not want to misreport a higher value v+. Second, we show that

the expected payment on winning, i.e., pC(v)/x(v) is monotone in v. Finally, we show

that the agent with value v does not want to misreport a lower value v−. Recall in the

subsequent discussion that pRN is the risk-neutral expected payment for allocation rule x

(from Theorem 5.1, part 2).

(1) (Type v misreporting v+.) This argument pieces together two simple observations.

First, Claim D.4 and the fact that pC ≥ pVC imply that v is risk-neutral upon

reporting v+. Second, by definition of pC , the difference in a capacitated agent’s

payments given by pC(v+)− pC(v) is at least that for a risk neutral agent given by

pRN(v+)−pRN(v). The risk-neutral agent’s utility is linear and she prefers reporting

v to v+. As the risk-averse agent’s utility is also linear for payments in the given
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range and because the difference in payments is only increased, then the risk-averse

agent must also prefer reporting v to v+.

(2) (Monotonicity of pC/x.) The monotonicity of pC

x
, which is part 2 of Lemma 5.12,

will be used in the next case (and some applications of Theorem 5.11). We consider

v and v+ and argue that pC(v)
x(v)

≤ pC(v+)
x(v+)

. First, suppose that the wealth upon

winning of an agent with value v is C, i.e., pC(v) = pVC(v). If pC(v+) = pVC(v+)

as well, then by definition of pVC (by pVC(v)
x(v)

= v − C) monotonicity of pC/x holds

for these points. If pC is higher than pVC at v+ then this only improves pC/x at

v+. Second, suppose that the wealth of an agent with value v is strictly larger than

C, meaning this agent’s utility increases with wealth. The allocation rule x(·) is

weakly monotone (Lemma D.1), suppose for a contradiction that pC(v)
x(v)

> pC(v+)
x(v+)

on

v < v+. Then the agent with value v can pretend to have value v+, obtain at least

the same probability of winning, and obtain strictly lower payment. This increase

in wealth is strictly desired, and therefore, this agent strictly prefers misreport v+.

Combined with part 1, above, which argued that a low valued agent would not

prefer to pretend to have a higher value, this is a contradiction.

(3) (Type v misreporting v−.) If pC(v) = pVC(v), then paying less on winning does not

translate into extra utility, and hence by the monotonicity of pC/x, the agent would

never misreport.

We thus focus then on the case that pC(v) > pVC(v). By the monotonicity of

pC/x, there is a point v0 < v such that for every value v− between v0 and v, if

an agent with value v reported v−, she would still be in the risk-neutral section

of her utility function. Specifically, this entails that ∀v− such that v0 < v− < v,

pC(v−)/x(v−) ≥ v − C. Consider such a v0 and any such v−. For any such point,
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pC(v−)/x(v−) > v−−C, and hence a bidder with value v− would also be strictly in

the risk-neutral part of her utility function upon winning.

For every such point, by our formulation in (5.11), pC(v) − pC(v−) = pRN(v) −

pRN(v). As a result, since she is effectively risk-neutral in this situation, she cannot

wish to misreport v−; otherwise, the combination of x and pRN would not be BIC

for risk-neutral agents.

For any v− ≤ v0, the wealth on winning for a bidder with value v would increase,

but only into the capacitated section of her utility function, hence gaining no utility

on winning, but losing out on a chance of winning thanks to the weak monotonicity

of x. Hence, she would never prefer to bid v− over bidding v0. Combining this argu-

ment with the above argument, our agent with value v does not prefer to misreport

any v− < v. �
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